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Introduction to Ordinary 
Differential Equations
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Ordinary Differential 
Equations
• Where do ODEs arise?
• Notation and Definitions
• Solution methods for 1st order ODEs
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Where do ODE’s arise
• All branches of Engineering
• Economics
• Biology and Medicine
• Chemistry, Physics etc

Anytime you wish to find out how 
something changes with time (and 
sometimes space)
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Example – Newton’s Law of Cooling

• This is a model of how the temperature 
of an object changes as it loses heat to 
the surrounding atmosphere:

Temperature of the object: Room Temperature:

Newton’s laws states: “The rate of change in the temperature of an 
object is proportional to the difference in temperature between the object 
and the room temperature”

Form 
ODE

Solve
ODE

Where         is the initial temperature of the object.
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Notation and Definitions
• Order
• Linearity
• Homogeneity
• Initial Value/Boundary value problems
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Order
• The order of a differential equation is just 

the order of highest derivative used.

. 2nd order

3rd order
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Linearity
• The important issue is how the unknown y 

appears in the equation. A linear equation 
involves the dependent variable (y) and its 
derivatives by themselves. There must be no 
"unusual" nonlinear functions of y or its 
derivatives.

• A linear equation must have constant 
coefficients, or coefficients which depend on the 
independent variable (t). If y or its derivatives 
appear in the coefficient the equation is non-
linear.
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Linearity - Examples

is linear

is non-linear

is linear

is non-linear
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Linearity – Summary
Linear Non-linear
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Linearity – Special Property
If a linear homogeneous ODE has solutions:

and

then:

where a and b are constants,

is also a solution.
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Linearity – Special Property
Example:

has solutions and

Check

Therefore is also a solution:

Check
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Homogeniety 
• Put all the terms of the equation which involve 

the dependent variable on the LHS. 
• Homogeneous: If there is nothing left on the RHS 

the equation is homogeneous (unforced or free)
• Nonhomogeneous: If there are terms involving 

t (or constants) - but not y - left on the RHS the 
equation is nonhomogeneous (forced)
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 Example
• 1st order
• Linear
• Nonhomogeneous
• Initial value problem

 2nd order
 Linear
 Nonhomogeneous
 Boundary value 

problem
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 Example
• 2nd order
• Nonlinear
• Homogeneous
• Initial value problem

 2nd order
 Linear
 Homogeneous
 Initial value problem
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Solution Methods - Direct 
Integration

• This method works for equations where 
the RHS does not depend on the 
unknown:

• The general form is:
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Direct Integration
• y is called the unknown or dependent variable;
• t is called the independent variable;
• “solving” means finding a formula for y as a 

function of t;
• Mostly we use t for time as the independent 

variable but in some cases we use x for distance.
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Direct Integration – 
Example

Find the velocity of a car that is 
accelerating from rest at 3 ms-2: 

If the car was initially at rest we 
have the condition: 
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Solution Methods - 
Separation

The separation method applies only to 1st 
order ODEs. It can be used if the RHS can 
be factored into a function of t multiplied 
by a function of y:
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Separation – General Idea

First Separate:

Then integrate LHS with 
respect to y, RHS with respect 
to t. 
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Separation - Example

Separate: 

Now integrate:
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