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LIMITS AND 

CONTINUITY 
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THE LIMIT PROCESS (AN INTUITIVE INTRODUCTION) 

We could begin by saying that limits are important in calculus, but that would 
be a major understatement. Without limits, calculus would not exist. Every 

single notion of calculus is a limit in one sense or another.  

For example: 
 
What is the slope of a curve? It is the limit of 
slopes of secant lines.  

What is the length of a curve? It is the limit of 
the lengths of polygonal paths inscribed in the 
curve.  
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What is the area of a region bounded by a curve? It is the limit of the sum of areas 
of approximating rectangles. 
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The Idea of a Limit 

We start with a number c and a function f defined at all numbers x near c but 
not necessarily at c itself. In any case, whether or not f is defined at c and, if 
so, how is totally irrelevant.   
Now let L be some real number. We say that the limit of  f (x) as x tends to c 

is L and write 

 
provided that (roughly speaking) 

as x approaches c, f(x) approaches L 

or (somewhat more precisely) provided that 

f (x) is close to L for all x ≠ c which are close to c. 

 lim
x c

f x L



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Example 1  
Set f(x) =  4x + 5 and take  c = 2. As x approaches 2, 4x approaches 8 and 4x + 
5 approaches 8 + 5 = 13. We conclude that 

.13)(lim
2




xf
x
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Example 2  
Set 

As x approaches −8, 1 − x approaches 9 and             approaches 3. We conclude 
that 

If for that same function we try to calculate 

we run into a problem. The function                        is defined only for x ≤ 1. It 
is therefore not defined for x near 2, and the idea of taking the limit as x 

approaches 2 makes no sense at all: 

does not exist. 

  1f x x  and take c = −8. 
1 x

 
8

lim 3
x

f x




 
2

lim
x

f x


  1f x x 

 
2

lim
x

f x

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Example 3  

First we work the numerator: as x approaches 3, x3 approaches 27, −2x 
approaches –6, and x3 – 2x + 4 approaches 27 – 6 + 4 = 25. Now  for the 
denominator: as x approaches 3, x2 + 1 approaches 10. The quotient (it would 
seem) approaches 25/10 = 52. 

.
2

5

1

42
lim

2

3

3





 x
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The curve in Figure 2.1.4 represents the graph of a function f. The number c is 
on the x-axis and the limit L is on the y-axis. As x approaches c along the  
x-axis, f (x) approaches L along the y-axis. 
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As we have tried to emphasize, in taking the limit of a function f as x tends to c, 
it does not matter whether f is defined at c and, if so, how it is defined there. The 
only thing that matters is the values taken on by f at numbers x near c. Take a look 
at the three cases depicted in Figure 2.1.5. In the first case, f (c) = L. In the second 
case, f  is not defined at c. In the third case, f is defined at c, but f (c) ≠ L. However, 
in each case 
 
 
because, as suggested in the figures,  

as x approaches c, f (x) approaches L. 

 lim
x c

f x L



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Example 4 
Set 
 
and let c = 3. Note that the function f is not defined at 3: at 3, both numerator and 
denominator are 0. But that doesn’t matter. For x ≠ 3, and therefore for all x near 3, 

 
2 9

3

x
f x

x






  2 3 39
3

3 3

x xx
x

x x

 
  

 

Therefore, if x is close to 3, then 
2 9

3
3

x
x

x


 



is close to 3 + 3 = 6. We conclude that 

 
2

3 3

9
lim lim 3 6

3x x

x
x

x 


  


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Example 5 

lim               = 12. 
x3 – 8 

x – 2 
x → 2  

The function f(x) =                is undefined at x = 2. But, as we said before, that  

doesn’t matter. For all  x     2, 

x3 – 8 

x – 2 
≠ 

x3 – 8           (x – 2)(x2 + 2x +4) 

x – 2                     x – 2    
=                                       = x2 + 2x +4. 

Therefore, 

x3 – 8 

x – 2 x → 2  
lim              = lim (x2 + 2x + 4) = 12. 

x → 2  
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Example 6 
                      
If f(x) =                                    then lim f(x) = –4. 

3x – 4, x ≠ 0 

      10, x ≠ 0, x → 0  

It does not matter that f(0) = 10. For x ≠ 0, and thus for all x near 0,  

           f(x) = 3x – 4        and therefore lim f(x) = lim (3x – 4) = –4. 
x → 0  x → 0  
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One-Sided Limits 

Numbers x near c fall into two natural categories: those that lie to the left 
of c and those that lie to the right of c. We write 

[The left-hand limit of f(x) as x tends to c is L.] 

to indicate that 

as x approaches c from the left, f(x) approaches L. 

We write 

[The right-hand limit of f(x) as x tends to c is L.] 

to indicate that 

as x approaches c from the right, f(x) approaches L 

 lim
x c

f x L




 lim
x c

f x L



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Example 

Take the function indicated in Figure 2.1.7. As x approaches  
5 from the left, f (x) approaches 2; therefore 

As x approaches 5 from the right, f (x) approaches 4; therefore 

The full limit,               , does not exist: consideration of x < 5 would force the 

limit to be 2, but consideration of x > 5 would force the limit to be 4. 

 

For a full limit to exist, both one-sided limits have to exist and they have to be equal. 

 
5

lim 2
x

f x




 
5

lim 4
x

f x




 
5

lim
x

f x

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Example 7  
For the function f indicated in figure 2.1.8, 

In this case 

It does not matter that f (−2) = 3.  
 
Examining the graph of f near x = 4, we find that 

Since these one-sided limits are different, 

does not exist. 

 
 

 
 

2 2
lim 5 and lim 5

x x

f x f x
    

 

 
2

lim 5
x

f x




   
4 4

lim 7 whereas lim 2
x x

f x f x
  

 

 
4

lim
x

f x

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Example 8  
Set                     . Note that f(x) = 1 for x ＞ 0, and f(x) = −1 for x ＜ 0: 
 
 
                              f(x) =  

  1,    if x ＞ 0 

−1,    if x ＜ 0. 

Let’s try to apply the limit process at different numbers c.  

      If c ＜ 0, then for all x sufficiently close to c,  

x ＜ 0 and f(x) = −1. It follows that for c ＜ 0 

lim f(x) = lim (−1) = −1 
x → c x → c 

If c ＞ 0, then for all x sufficiently close to c, x ＞ 0 and f(x) = 1. It follows that 
for c ＜ 0 

lim f(x) = lim (1) = 1 
x → c x → c 

However, the function has no limit as x tends to 0: 

                          lim f(x) = −1       but        lim f(x) = 1. 
x → 0- x → 0+ 

xxxf /)( 
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Example 9  
We refer to function indicated in Figure 2.1.10 and examine the behavior of 
f(x) for x close to 3 and close to to 7. 
      
    As x approaches 3 from the left or from the right, f(x)  
becomes arbitrarily large and cannot stay close to any  
number L. Therefore 
 
                                  lim f(x)          does not exist. 
 
    As x approaches 7 from the left, f(x) becomes arbitrarily large and cannot 
stay close to any number L. Therefore 
 
                                  lim f(x)          does not exist. 
 
The same conclusion can be reached by noting as x approaches 7 from the 
right, f(x) becomes arbitrarily large. 
  

x → 3  

x → 7  
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

Remark To indicate that f (x) becomes arbitrarily large, we can write  
f (x)→∞.  To indicate that f (x) becomes arbitrarily large negative, we 
can write f (x)→−∞.   
 
Consider Figure 2.1.10, and note that for the function depicted  
there the following statements hold: 

as x → 3¯,       f (x) → (∞)     and     as x → 3  ,      f (x)→∞. 

Consequently, 

as x → 3,      f (x)→∞. 

Also, 

as x → 7¯,      f (x)→−∞     and     as x → 7  ,      f (x)→∞. 

We can therefore write 

as x → 7,      | f (x)| → ∞. 


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Example 10 
We set  
                                    f(x) =   
 
 
and examine the behavior of f(x) (a) as x tends to 4  
and then (b) as x tends to 2. 

   1 

x – 2 
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Example 11 
 
 
Set f(x) =   

1 – x2,   x ＜ 1 

1/(x – 1),   x＞ 1. 
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Example 12 
Here we set f(x) = sin (π/ x) and show that the function can have no limit as  
x → 0 

    The function is not defined at x = 0, as you know, that’s irrelevant. What keeps 
f from having a limit as x → 0 is indicated in Figure 2.1.13. As x → 0, f(x) keeps 
oscillating between y = 1 and y = –1 and therefore cannot remain close to any 
one number L. 
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Example 13 

Let f(x) = (sin x)/x. If we try to evaluate f at 0, we get the meaningless ratio 0/0; 
f is not defined at x = 0. However, f is defined for all x ≠ 0, and so we can 
consider   
                                       lim           . 

sin x 

   x    x → 0  

We select numbers that approach 0 closely from the left and numbers that 
approach 0 closely from the right. Using a calculator, we evaluate f at these 
numbers. The results are tabulated in Table 2.1.1. 
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    These calculations suggest that 
                                 
                               

and therefore that 

          

                                  

The graph of f, shown in Figure 2.1.14,  

supports this conclusion. A proof that this  

limit is indeed 1 is given in Section 2.5. 

1
sin

lim        and         1
sin

lim
00


  x

x

x

x

xx

.1
sin

lim
0


 x

x

x
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Summary of Limits That Fail to Exist 

Examples 7-13 illustrate various ways in which the limit of a function f at a number  
c may fail to exist.  We summarize the typical cases here: 

(i)            (Examples 7, 8).        

(The left-hand and right-hand limits of f at c each exist, but they are not equal.) 

(ii)  f(x) → +∞ as x → c–,   or    f(x) → +∞ as x → c+,   or   both (Examples 9, 10, 11).  (The 
function f is unbounded as x approaches c from the left, or from the right, or both.) 

(iii)  f(x) “oscillates” as x → c–, c+ or c (Examples 12, 13). 

        

   1 2 1 2lim , lim and
x c x c

f x L f x L L L
  

  
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Figures 2.2.1 and 2.2.2 illustrate this definition. 
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In Figure 2.2.3, we give two choices of ε and for each we display a suitable δ. For 
a δ to be suitable, all points within δ of c (with the possible exception of c itself) 
must be taken by the function f to within ε of L. In part (b) of the figure, we began 
with a smaller ε and had to use a smaller δ. 

The δ of Figure 2.2.4 is too large for the given ε. 
In particular, the points marked x1 and x2 in the 
figure are not taken by f to within ε of L. 
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The limit process can be described entirely 
in terms of open intervals as shown in 
Figure 2.2.5. 
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Example 1 

Show that 
                                                lim (2x – 1) = 3.                                 (Figure 2.2.6) 

     
     

x → 2 
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x → –1 

Example 2 

Show that 
                                                lim (2 – 3x) = 5.                                 (Figure 2.2.7) 
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Example 3 

For each number c 

Example 4 

For each real number c 

Example 5 

For each constant k 
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x → 3 

Example 6 

Show that 
                                                lim x2 = 9.                                 (Figure 2.2.11) 
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Example 7 

Show that 
                                                                                                            (Figure 2.2.12) 

      .2lim
4




x
x
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There are several different ways of formulating the same limit statement. 
Sometimes one formulation is more convenient, sometimes another, In 
particular, it is useful to recognize that the following four statements are 
equivalent: 
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x → 3 

Example 8 

 
For f(x) = x2, we have 
                      lim x2 = 9                      lim (3 + h)2 = 9 
             
              
              lim (x2 – 9) = 0                     lim   x2 – 9  = 0. 
                       

x → 3 x → 3 

h → 3 
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One-sided limits give us a simple way of determining whether 
or not a (two-sided) limit exists:   
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Example 9 

For the function defined by setting 

does not exist. 

Proof  
The left- and right-hand limits at 0 are as follows: 

Since these one-sided limits are different, 

does not exist. 

  2

2 1, 0

, 0

x x
f x

x x x

 
   

 
0

lim
x

f x


       2

0 0 0 0
lim lim 2 1 1, lim lim 0
x x x x

f x x f x x x
      

     

 
0

lim
x

f x

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Proof  
The left- and right-hand limits at 1 are as follows: 

Example 10 

For the function defined by setting 
 
                             
                          g(x) = 
 
 
lim g(x) = 2. 

1 + x2,     x ＜ 1 

        3,    x = 1 

4 – 2x,    x ＞ 1, 

x → 1 

     lim g(x) = lim (1 + x2) = 2,            lim g(x) = lim (4 – 2x) = 2. 

 

Thus, lim g(x) = 2. NOTE: It does not matter that g(1) ≠ 2. 
x → 1 

x → 1+ x → 1 – x → 1 – x → 1+ 
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The following properties are extensions of Theorem 2.3.2. 
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Examples 

        lim (5x2 – 12x + 2) = 5(1)2 – 12(1) + 2 = –5, 

        lim (14x5 – 7x2 + 2x + 8) = 14(0)5 – 7(0)2 + 2(0) + 8 = 8 

        lim (2x3 + x2 – 2x – 3) = 2(–1)3 + (–1)2 – 2(–1) – 3 = –2.  

x → 0 

x → 1 

x → – 1 
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Examples 

            

         lim        = 16,     lim                 =         ,    lim        =            =         . 
1 

x2 

    1 

x3 – 1 

1 

7  

1 

x 

 1 

 –3 

1 

3 x → 4 x → 2 x → – 3 
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Examples 

22

3 2

23

3 5 6 5 1
lim

1 4 1 5

3 27 27
lim 0

1 1 9

x

x

x

x

x x

x





 
 

 

 
 

 



Main Menu 

Examples 

From Theorem 2.3.10 you can see that 
2

21 2 0

3 7 5
lim lim lim

1 4x x x

x x

x x x  


 

All fail to exist. 
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Example 1 

Evaluate the limits exist: 

 

  (a)    lim                     ,       (b)    lim                          ,     (c)    lim                            . 
x2 – x – 6 

    x – 3 

(x2 – 3x – 4)2 

     x – 4 

        x + 1 

 (2x2 + 7x + 5)2 x → 3 x → 4 x → –1 
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Example 2  

Justify the following assertions. 

 

   

  (a)    lim                  = –        ,       (b)    lim                = 6.                      
1/x – 1/2 

   x – 2 

 x – 9 

√ x – 3 x → 2 x → 9 

 1 

 4 
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Continuity at a Point 

The basic idea is as follows: We are given a function f and a number c. We 
calculate (if we can) both                and f (c). If these two numbers are equal, we 
say that f is continuous at c.  Here is the definition formally stated. 

If the domain of f contains an interval (c − p, c + p), then f can fail to be 
continuous at c for only one of two reasons: either 

 (i)  f has a limit as x tends to c, but                             ,    or 

 (ii) f has no limit as x tends to c. 
 
In case (i) the number c is called a removable discontinuity. The discontinuity can 
be removed by redefining f at c. If the limit is L, redefine f at c to be L. 
 
In case (ii) the number c is called an essential discontinuity. You can change the 
value of f at a billion points in any way you like. The discontinuity will remain. 

   lim
x c

f x f c




 lim
x c

f x

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The functions shown have essential discontinuities at c.  
 
The discontinuity in Figure 2.4.2 is, for obvious  
reasons, called a jump discontinuity.  

The functions of Figure 2.4.3 have infinite discontinuities. 
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Example 1 
The function 

is continuous at all real numbers other than 2 and 3. You can see this by noting 
that 
 

F = 3 f + g/h + k 

where 
 

f (x) = |x|,      g(x) = x3 − x,       h(x) = x2 − 5x + 6,       k(x) = 4. 

 
Since f, g, h, k are everywhere continuous, F is continuous except at 2 and 3, the 
numbers at which h takes on the value 0. (At those numbers F is not defined.) 

 
3

2
3 4

5 6

x x
F x x

x x


  

 
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Example 2 

The function F(x) =                  is continuous at all numbers greater than 3. To see this,  

 

note that F = f     g, where 

 

                                                      and        g(x) =               .  

 

Now, take any c ＞ 3. Since g is a rational function and g is defined at c, g is 
continuous at c. Also, since g(c) is positive and f is continuous at each positive 
number, f is continuous at g(c). By Theorem 2.4.4, F is continuous at c. 

x2 + 1 

x – 3 

x2 + 1 

x – 3 
xxf )(
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Example 3 

The function                                    is continuous everywhere except at x = ±3,  

 

where it is not defined. To see this, note that F = f    g    k    h, where 

                            

 

 

and observe that each of these functions is being evaluated only where it is 
continuous. In particular, g and h are continuous everywhere, f is being evaluated only 
at nonzero numbers, and k is being evaluated only at positive numbers.           .  

165

1
)(

2 


x
xF

.16)(           ,)(            ,5)(          ,
1

)( 2  xxhxxkxxg
x
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Example 4 

Determine the discontinuities, if any, of the following function: 

 

                            f(x) =  

2x + 1,            x ≦ 0 

        1,     0 ＜ x ≦ 1 

x2 + 1,             x ＞ 1.  

(Figure 2.4.8) 
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Example 5 

Determine the discontinuities, if any, of the following function: 

                      

 

                  

                      f(x) =  

      x3,                    x ≦ –1 

x2 – 2,           –1 ＜ x ＜ 1  

 6 – x,             1 ≦ x ＜ 4 

              ,        4 ＜ x ＜ 7 

5x + 2,                    x ≧ 7. 

   6 
7 – x 
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 
2

1

1
f x

x




Continuity on Intervals 

A function f is said to be continuous on an interval if it is continuous at each interior 
point of the interval and one-sidedly continuous at whatever endpoints the interval may 
contain. 
For example: 
(i)   The function 

 

       is continuous on [−1, 1] because it is continuous at each point of (−1, 1),  
       continuous from the right at −1, and continuous from the left at 1.  
       The graph of the function is the semicircle. 

(ii)  The function 

 

       is continuous on (−1, 1) because it is continuous at each point of (−1, 1). It is not 
       continuous on [−1, 1) because it is not continuous from the right at −1. It is not 
       continuous on (−1, 1] because it is not continuous from the left at 1. 

(iii) The function graphed in Figure 2.4.8 is continuous on (−∞, 1] and continuous on 

       (1,∞). It is not continuous on [1,∞) because it is not continuous from the right at 1. 
(iv) Polynomials, being everywhere continuous, are continuous on (−∞,∞). 

 

Continuous functions have special properties not shared by other functions. 

  21f x x 
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From this it follows readily that 



Main Menu 



Main Menu 

In more general terms, 

Example 1 
Find 

Solution 

To calculate the first limit, we “pair off” sin 4x with 4x and use (2.5.6): 

Therefore, 

The second limit can be obtained the same way: 

0 0

sin 4 1 cos2
lim and lim

3 5x x

x x

x x 



 
0 0 0

sin 4 4 sin 4 4 sin 4 4 4
lim lim lim 1

3 3 4 3 4 3 3x x x

x x x

x x x  

       

 
0 0 0

1 cos2 2 1 cos2 2 1 cos2 2
lim lim lim 0 0

5 5 2 5 2 5x x x

x x x

x x x  

  
    
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Example 2 
Find                   lim x cot 3x. 
 
 
 
 
  
 

x → 0 
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Example 3 

 
  
Find  
 
 
 

.

)(

)sin(
lim

24/

4

1

4

1











x

x

x
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Example 4  

 
 
Finding                   lim                    .  
 

     x2 

sec x – 1 x → 0 
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A function which is continuous on an interval does not “skip” any values, and thus 
its graph is an “unbroken curve.” There are no “holes” in it and no “jumps.” This 
idea is expressed coherently by the intermediate-value theorem. 
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Example 1 

We set f(x) = x2 – 2. Since f(1) = –1 ＜ 0 and f(2) = 2 ＞ 0, there exists a number c 
between 1 and 2 such that f(c) = 0. Since f increases on [1, 2], there is only one such 
number. This is the number we call      . 

    So far we have shown only that        lies between 1 and 2. We can locate      more 
precisely by evaluating f at 1.5, the midpoint of the interval [1, 2]. Since f(1.5) = 0.25 
＞ 0 and f(1) ＜ 0, we know that       lies between 1 and 1.5. We now evaluate f at 1.25, 
the midpoint of [1, 1.5]. Since f(1.25)     –0.438 ＜ 0 and f(1.5) ＞ 0, we know that    
lies between 1.25 and 1.5. Our next step is to evaluate f at 1.375, the midpoint of [1.25, 
1.5]. Since f(1.375)      –0.109 ＜ 0 and f(1.5 ) ＞ 0, we know that       lies between 
1.375 and 1.5. We now evaluate f at 1.4375, the midpoint of [1.375, 1.5]. Since 
f(1.4375)     0.066 ＞ 0 and f(1.375) ＜ 0 , we know that       lies between 1.375 and 
1.475. The average of these two numbers, rounded off two decimal places, is 1.41. A 
calculator gives       1.4142. So we are not far off. 

2

2 2

2
2

2

2

2
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Example 2 

Let 

 

 

It is clear that g is unbounded on [0, ∞). (It is unbounded above.) However, it is 
bounded on [1, ∞). The function maps [0, ∞) onto [0, ∞), and it maps [1, ∞) onto (0, 1].  

 

(Figure 2.6.5) 
)(xg

0,     

,/1 2
x



Main Menu 

For a function continuous on a bounded closed interval, the existence 
of both a maximum value and a minimum value is guaranteed. The 
following theorem is fundamental. 
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From the intermediate-value theorem we know that 

“continuous functions map intervals onto intervals.” 

Now that we have the extreme-value theorem, we know that 
 

“continuous functions map bounded closed intervals [a, b] onto 

bounded closed intervals [m, M].” 

Of course, if f is constant, then M = m and the interval [m, M] collapses to a point. 


