ANIMAL

KINGDOM

CHARACTERISTICS OF ALL ANIMALS

- They are made of cells, which form tissues, which form organs which form organ systems.
- They obtain food by eating other organisms (herbivores, carnivores or omnivores).
- Most animals reproduce sexually but some can reproduce asexually.

TYPES OF FOOD EATERS

Carnivore They are meat eater Omnivore They eat plants and meat Herbivore They are plant eater

DIVISION OF ANMALS

VERTEBRATES

Animals with backbones

INVERTEBRATES

Animals without backbones

TYPES OF SYMMETRY

Animals have bilateral symmetry (1 line that can divide the animal into 2 identical parts) **bor radial symmetry** (many lines that can divide the animal into equal parts).

Animal symmetry

Spherical symmetry

Radial symmetry

Bilateral symmetry

PORFERM

Simplest form of animal ► No tissues or organs heterotrophic & cells that have specialized jobs Bodies pierced all over with openings called pores

HOW DO SPONGES EAT & BREATHE?

Collar cells on the inside of central cavity trap bacteria & protists & digest them. Sponges get O2 by

diffusion.

Soft bodies have network of spikes.

- Made of tough material, but food for some types of fish.
- Can reproduce asexually (budding) and sexually. Fertilized eggs go through larvae stage.

PHYLUM COELENTERATA

- Carnivores use stinging cells to capture prey & defend selves.
- Specialized tissues no organs.
- Radial symmetry

2 body types: polyp (like a vase with a mouth opening at the top) and medusa (bowl shaped).

(a) Sea anemone: a polyp

(b) Jelly: a medusa

Digestion

Capture prey using stinging cells to inject venom - paralyzes prey

Pull prey into mouth, digest in body cavity digestive system: 1 opening expel food from mouths also.

PHYLUM CTENOPHOR& (COMB BE&RERS)

Defining Characteristics Plates of fused cilia arranged in rows Adhesive prey capturing cells (colloblasts) ► Comb jellies are delicate, transparent, non-stinging predators

CTENOPHOR& STRUCTURE

Similar in structure to Cnidaria medusa

Poorly studied due to fragile nature Phylum Ctenophora

DIGESTION

- Feed on plankton, other ctenophores and other Cnidarian jellies
- Gut extends through the entire body; mouth is at the oral end
- Anal pore is at the aboral end

CTENOPHORE DIVERSITY

Most species live in the open ocean and are not well studied

New studies use submersibles and divers to collect specimens, eliminating specimen destruction by fast towed nets

- Phylum Ctenophora
- Order Lobata
- Order Beroida

PHÝLUM PLATYHELMINTHES

PHYLUM PL&TYHELMINTHES

The flatworms

- They are triploblastic and have bilateral symmetry
- no body cavity (acoelomate)
- These animals are the first to exhibit a head.
- Many flatworms are parasites of chordates (fish, reptiles, mammals, etc..) These are the tapeworms and flukes

The worms in this phylum are all very thin and <u>flat</u>, like this parasitic liver fluke.

All flatworms, including this planarian, have bilateral symmetry.

Flatworms are the first animals to have a <u>head</u>. Note the hooks and suckers on the head of this tapeworm.

