
UNIT - I:

INTRODUCTION TO DATA STRUCTURES

Introduction to the Theory of Data Structures, Data Representation, Abstract Data

Types, Data Types, Primitive Data Types, Data Structure and Structured Type,

Atomic Type, Difference between Abstract Data Types, Data Types, and Data

Structures, Refinement Stages

Principles of Programming and Analysis of Algorithms: Software Engineering,

Program Design, Algorithms, Different Approaches to Designing an Algorithm,

Complexity, Big ‘O’ Notation, Algorithm Analysis, Structured Approach to

Programming, Recursion, Tips and Techniques for Writing Programs in ‘C’

Introduction to the Theory of Data Structures:

 When a programmer develops a program, he needs to concentrate on three

things viz., developing user interface, process and the data storage. In C language

the user interface is managed with the help of IO functions and the process is

managed with the help of operators, branching, loops, functions etc. the data is

managed with the help of variables, arrays, pointers, structures etc.

 In the study of computer science, the professional must study the

organization for which the management is to be done and should make a study of

the flow of data and how the data is to be organized in computer. .

The data structure name indicates itself that organizing the data in memory.

There are many ways of organizing the data in the memory as we have already

seen one of the data structures, i.e., array in C language.

The data structure is not any programming language like C, C++, java, etc. It

is a set of algorithms that we can use in any programming language to structure the

data in the memory.

Data Structure is a way of collecting and organizing data in such a way that

we can perform operations on these data in an effective way. Data Structures is

about rendering data elements in terms of some relationship, for better organization

and storage.

In simple language, Data Structures are structures programmed to store

ordered data, so that various operations can be performed on it easily. It represents

the knowledge of data to be organized in memory. It should be designed and

implemented in such a way that it reduces the complexity and increases the

efficiency.

 The different data structures used in computer science are stacks,

queues, linked lists, trees, graphs etc. To structure the data in memory number of

algorithms were proposed, and all these algorithms are known as Abstract data

types. These abstract data types are the set of rules.

Data Representation:

Data type is an attribute associated with a piece of data that tells a computer

system how to interpret its value. Understanding data types ensures that data is

collected in the preferred format and the value of each property is as expected.

The basic unit of data representation is a BIT i.e. a Binary Digit, either 0 or

1. Various combinations of these two values represent different data values in

different systems.

Eight bits together for a BYTE and it represents a character or a symbol in

keyboard. A character or more no. of characters forms a string. Thus, the string is

an ADT that provides many facilities to do process on strings like storing,

concatenating, counting characters etc.

Integer is another representation of data, which lets to do numeric addition,

subtraction, multiplication etc operations. The ADT of integer permits to store

negative numbers and also positive numbers. But based on the software system

being used, the capacity may vary from system to system.

Real data type representation supports floating point values like 2.5 etc. The

real data type is represented with different names in different software system.

Character representation of data, is used for storing and managing values on

which numeric operations are NOT performed. For example, if we need to store

salary of an employee, we may represent data as integer ADT or a real ADT. But

the same employee ID, or name or mobile number etc, on which e need not

perform any numeric operation, then we can represent such data as character ADT,

or a string ADT. There are different codes called EBCDIC, ASCII are used to store

the character type data.

Abstract Data Types:

An abstract data type (ADT) is defined as a mathematical model of data

objects that make up data type and the functions that operate on those data objects.

The ADT is the specification of logical and mathematical properties of a data type

or data structure.

 The ADT acts as a useful guideline to implement the data type correctly.

This specification is implemented with syntaxes of languages. The ADT describes

two things.

➔ how the data is related with each other

➔ the statements of operations that can be performed on that data type.

 For example, the computer science defined INTEGER type ADT, specifying

that it stores a numeric value and that can be performed with addition, subtraction

etc processes. The languages C, C++, java etc are created a data type “int” as per

the specifications given in that ADT.

 The INTEGER-ADT defines the set of numbers from “–infinite, … -3., -2, -

1 , 0 , 1, 2, 3, 4,… infinite” . And in C language it is implemented with “int” data

type. Based on language, there are some other issues to be identified as, range of

the data type, the memory space occupied by the value, different operations that

can be performed etc.

For example, Stack is one of the data structures, where data can be inserted and

removed only from one end. The new element joining the set is kept on TOP and

only the top most can be removed from it. In other words, only one element at TOP

is accessible.

The informal ADT of STACK is as follows :

STACK: {1,2,3,4…n} , TOP

Condition : TOP=null

Insert operation: push()

 Precondition: top!=n

 insert (data)

 TOP - > data

Removal operation: pop()

 Precondition: TOP!=null

 remove(top)

 top - > current data

Data Types

 Data has different definitions from different views. From the view of a

database programmer, it is collection of raw facts. From programmers view, it is a

value available in user environment that has no meaning to user. In the view of

system / language architecture, a value that is stored in the memory in the form of

bits.

 Though there can be a universal (common) representation for data, but to

store 8 bit data (character) or a 16/32 bit data (integer) or any floating value or a

string, there are different issues to be considered, as memory space occupied. A

floating value occupies large space than an integer value. If same memory space is

occupied by for character, integer and also for a float, then large volume of

memory is occupied for small data value. And different types of data values need

different interpretation (type of process) to be done, and it becomes difficult if a

universal representation is used in computers to manage data.

 Considering all above problems, different data type representations are

provided in all languages, to have better memory management and provide

different processes to be done on the different type of elements.

Primitive Data Types

 Every system has its own set of native data types called basic data types or

primitive data types that defines how the data is internally represented and stored,

and retrieved from memory.

The primitive data types can be directly controlled by computer commands. That

means it is defined by the system and compiler. The following are Primitive data

structure in C.

1. Integer

2. Character

3. Double

4. Float

5. String

Integer: In the integer, it includes all mathematical values, but it is not include

decimal value. It is represented by the int keyword in the program.

Character: The character is used to define a single alphabet in the programming

language. It is represented by the char keyword in the program.

String: The group of the character is called a string. It is represented by the string

keyword in the program. The string is written with a double quotation mark ("-").

For example: “My name is Bob”.

Float and Double: Float and double is used for real value.

Data Structure and Structured Type

A Data Structure refers to a set of data elements i.e. computer variables that are

connected in some logical manner. That logical manner is like using indexing in

case of arrays and using pointers to point to next element in case of structures.

A simple data type can store only one value at a time. A structured data type is

one in which each data item is a collection of other data items. In a structured data

type, the entire collection uses a single identifier (name). The purpose of structured

data types is to group related data of various types for convenient access using the

same identifier. Similarly, data can then be retrieved as an aggregate, or each

component (element) in the collection can be accessed individually. Furthermore, a

structured data type is a user-defined data type (UDT) with elements that are

divisible, and can be used separately (independently) or as a single unit, as

appropriate.

C simple data types:

1. integral (char, short, int, long, and bool)

2. enum

3. floating (float, double, long double)

C structured data types:

1. array

2. struct

3. union

***Even though individual characters in a string can be accessed, the string data

type is not considered a structured data type.

Atomic Type

 Generally a data structure contains 2 parts. The DATA and LINK (a pointer

that stores address to next data element). This makes it easy to store the DATA

and relating it to some other data by storing its address in a pointer of LINK part.

The atomic data type is an element that stores only data. So, by itself, it

cannot point / link to other data values. So using these atomic types of the

language, the programmer need to create his own TYPE specification (ADT) that

can store a data value and also that can store address of next element to link data

values, to for a data STRUCTURE.

The individual element that stores a value and has a pointer to next element

is called a NODE. So a NODE will have data and a next pointer to point to next

element. When a new node with a value is inserted, its address is stored into the

next pointer of the last node, so that the last node’s next pointer links to the new

node inserted.

Using the atomic types, the programmers implement different algorithms to

form a data structure.

Difference between Abstract Data Types, Data Types, and Data Structures

 The ABSTRACT data type is the specification of the data type, which

specifies the logical and mathematical model of data. For example INTEGER is an

ADT that specifies how the WHOLE NUMBERS from –infinite to + infinite are to

be represented in system,

 The data type is the implementation of the abstract data type by a specific

software system. For example the data type “int” implements the ADT- INTEGER

in C and the same is represented as “number” by other software system called

oracle.

 The data structure refers to the collection of computer variables that are

connected in a specific manner. Using the user defined structures in C and classes

in C++/java, we can develop different ways of data storage and management like,

Linked Lists, Trees and Graphs etc called data structures.

Refinement Stages

Refinement is the idea that software is developed by moving through the

levels of abstraction, beginning at higher levels and moving down by refining the

software by providing more detail at each increment. At higher levels, the software

is merely its design models; at lower levels there will be some code; at the lowest

level the software has been completely developed. This follows a top-down

approach. This entire refinement stages are called SDLC (Software Development

Life Cycle).

More practically the refinement is the process of elaboration. We start with a

statement of function that is defined at a high level of abstraction. That is the

statement explains function or information conceptually but provides no

information about the internal workings of the function or the internal structure of

the information. Refinement reason that the designer to elaborate on the original

statement providing more and more detail as each successive refinement occurs.

The basic refinement stages are discussed below:

Conceptual level: this is also called abstract level refinement. In this the data

requirements, their relationships and the operations to be done are identified. The

process to be done is NOT identified in this level.

Algorithmic level: this is also called data structure level. At this level, the process

to be done on data is identified and the required data structure is identified for

storage and management of data, as such either to use a stack or a queue or a

linked list etc.

Implementation level: this is also called programming level refinement. At this

level, it is decided how the data structure is to be implemented in the memory. For

example, if the program demands a BINARY TREE in algorithmic level, then at

this level it is decided whether to develop a linked list to implement binary tree or

use an array to implement binary tree.

Application level: This level settles all details required for a particular application

like variables names, special requirements for operations required for applications.

PRINCIPLES OF PROGRAMMING AND ANALYSIS OF ALGORITHMS

Software Engineering

 Software Engineering is the practice of methods helpful for construction and

maintenance of large software systems. Software engineering is defined as a

process of analyzing user requirements and then designing, building, and testing

software application which will satisfy those requirements.

 It is tedious (very difficult) process of developing a software system

(project) and it takes a very long time to put it into use. The system undergoes

different stages before put into use and this is simply called SDLC (Software

Development Life Cycle).

Program Design

Algorithms

 The ALGORITHM is to the logical representation of the program. It is

defined as “a sequence of instructions that must be followed to solve a problem”.

The general characteristics of algorithm are:

- each instruction must be unique

- each instruction must be relative in nature of the program

- repetition of the same task is to be avoided, i.e. infinite recursive execution must be

avoided

- the result must be available as a meaningful statement to the user on completion of

algorithm execution.

Once algorithm is designed, it is checked for its correctness by giving some

input values and checking for correct outputs. After this simple testing of

algorithm, its efficiency is analyzed. This analysis includes the CPU time

consumed, memory consumed by the algorithm. This is called measuring the

complexity of the program.

Different Approaches to Designing an Algorithm

A complex software system is divided into small units called modules (using

user defined functions while coding). The advantage of modularity is each module

can be checked independently without concentrating on other modules and also

provides a facility of integrating all modules together and making a structured walk

through. There are two important approaches in designing the algorithms. They

are TOP-DOWN approach and BOTTOM-UP approach.

The to-down approach is also called water fall modal. In this modal, the

higher level components are identified and they are further decomposed into

smaller units. It provides a step by step refinement. It starts with abstract level and

further moves down to the results.

The bottom up approach is opposite to the above approach. Here the lowest

level component is identified and the design starts with that and moves to the top

level components in the design. That is, this approach starts with the last layers of

the abstraction and moves up to the higher layers of the abstraction.

Complexity

 In computer programming, the term complexity refers to computational

complexity. In which we measure the space required for an algorithm in

computer’s memory and time consumed by the algorithm during execution.

 The complexity is represented as f(n), where n denotes the size and time

required is represented with a function f().

 i.e. the f(n) means, time required for an algorithm for ‘n’ number of inputs.

While measuring the time complexity, we consider only count of key statements.

Key statements mean only the basic instructions of the algorithm. Because, in the

computer system as all the resources are shared by different resources, exact time

cannot be measured.

Considering the following algorithm:

ALGORITHM 1 : a=a+1

ALGORITHM 2 : for x=1 to n step 1

a=a+1

ALGORITHM 2 : for x=1 to n step 1

 for y=1 to n step 1

a=a+1

In the algorithm,1 a=a+1 is independent and executed only once. To the count of

frequency of basic statement is ‘1’.

In the second algorithm, the statement is within a loop, and the loop runs for f

times, so the frequency count becomes ‘n’.

In the last algorithm, the frequency becomes n2.

 So here in last algorithm, the magnitude (count / limit of execution / size …..

PARIMANAM in telugu) increases by squaring the size of ‘n’ like……

if ‘n’ is 1, then the magnitude 1

if ‘n’ is 2, then the magnitude 2

if ‘n’ is 3, then the magnitude 9

if ‘n’ is 4, then the magnitude 16

if ‘n’ is 5, then the magnitude 25 and so on and if it is 10… its magnitude becomes

100.

The space complexity is total fixed memory required and total variable memory

required for storing data.

Big ‘O’ Notation

This is used to measure the cost of an algorithm.

The letter ‘O’ is actually pronounced as “OMICRON” and it is a Greek letter

which means “rate of growth” and in other words “order of”.

So Big ‘O’ notation was actually called big omicron notation during late 18

hundreds and now a days is big ORDER notation that specifies the rate of growth

in an algorithm.

 It is an algebraic expression to measure the cost, in which different

representations are used like f(n) and g(n) etc. where the computing time of the

algorithm is expressed as f(n) and the GROWTH of a specific function is

represented as g(n) where ‘n’ is either no. of inputs or number of outputs or no. of

processes executed in that function.

 So f(n) is O g(n), pronounced as f(n) is order of g(n), that means, the

complexity of the algorithm is in order of growth of the algorithm. It is represented

as f(n) = O(g(n)).

 Taking example of the above three algorithms discussed in complexity

analysis, the f(n) the overall complexity is measured based on O(g(n)) and the

performance of the algorithm is decided and the programmers can prefer a specific

less complex algorithm.

The big -O notation is widely used to measure the complexity of the

algorithm or performance of the algorithm that can be preferred for

implementation.

In measuring the performance, the complexity is measured either with

constants like O(n) , which is called a linear time, O(n2) called quadratic time,

O(n3) is cubic time and O(nm) is exponential time and further, large algorithms

need to measure the complexity with logarithms. O(log(n)) etc.

Algorithm Analysis

 An algorithm is a logic written in simple English to solve a problem. A

problem may be of one statement and there can be different number of LOGICS /

ways / algorithms to solve that problem. Some solutions may be more efficient

than other s to solve that problem.

 For implementation of an algorithm to solve a specific problem, we calculate

the complexity of that algorithm and choose the best one. While analyzing the

algorithm’s complexity we can classify them into following:

 Best case time complexity

 Average case time complexity

 Worst case time complexity

Best case time complexity of an algorithm is a measure of MINIMUM time

the algorithm takes for ‘N’ inputs. Here, not only the ‘n’ inputs, but also their order

of input is also to be considered.

 The worst case time complexity is a measure of maximum time it takes for

‘n’ inputs. And the average time is a measure of average of best and worst cases.

But the average case time is not considered much.

Structured Approach to Programming

 Structured programming is a subset of software engineering. It is a method

of designing and coding programs in a systematic way.

 The structured approach mainly concentrates on technical aspects of the

problem and the software engineering concentrates on multiple aspects like

technical aspects, financial aspects, psychological aspects and managerial aspects.

Literally a program is ALGORITHMS+DATA STRUCTURES.

In the structured approach, a pictorial representation of an algorithm is made

first for easy analysis of flow of control and then the implementation of algorithm

is done. The different control symbols used are shown below:

Recursion

 Recursion is a concept of calling a function within itself. In software

engineering while developing solutions for problems, the recursive routines are the

powerful tool.

 When a programmer needs same process to be done on some data values

again and again, the recursion is the best solution.

Considering the example of factorial algorithm, factorial of a number can be

found in either a recursive method or in a non-recursive method.

int factorial(int n)

{

 int fact=1;

 if(n>1)

 fact=n * fact(n-1); //recursive call.

 return fact;

}

 In above function, if the argument given is 5, then the code executed on

value 5 is repeatedly executed on further on values 4, 3, 2 and the once the n

becomes 1, then the “return” returns itself, by skipping the recursive call.

In non-recursive methods, we may use any of the iterative statements like a

while loop, or a do-while or for loops. But while getting into complex situations,

the recursive method is preferable.

int factorial(int n)

{

 int fact=1;

 while(n>1){

 fact=fact * n;

 }

 printf(“%d”,f);

}

 In above both cases, the code gives same results, but when the complexity of

the algorithm is compared, the iterative method has less complexity than the

recursive method.

But further when going into heavy algorithms, the iterative statements

become inefficient to provide solution for many aspects where the recursive

methods are adapted.

Principles of recursion: there are some principles to be followed while designing

recursive algorithm is as follows.

 Find Key step to be executed recursively

 Find a stopping rule, when the recursion is to be stopped

 Identify the outline of the algorithm

 Check the termination whether it is done based on stopping rule

Draw a recursion tree to determine the amount of memory and number of times the

recursion is executed.

Tips and Techniques for Writing Programs in ‘C’

 Any program in any programming language generally follows its own

structure. The general outlook / structure of a C program looks as :

 Comments

 Pre-processor

 Global variables/ declarations

 main()

 {

 Process

 }

 function1()

 {

 process

 }

 function2()

 {

 process

 }

The comments can be given anywhere. These are used to indicate what is

going on in the code in that location.

The preprocessor directives are used to link required libraries and develop

macros. Like we use #include to link a library file and #define to develop macros

for writing code efficiently. The macros are also called symbolic constants in the

program.

Syntaxes:

include<file name>

#define macro_name macro expansion

 The global variables can be normal variables or constant variables that are

accessible throughout the program. If we need some variables to have fixed values

and do not change during running of program, then they can be declared as

constants.

 The typedef is a keyword used to define a new data type as of existing data

type. Literally, it is giving a new name to existing data type.

 The main() is the starting point of the program and the program DRIVER

code is placed within main() as the C runtime calls the main() function.

 Entire program is not placed within main(). Only the driver code is placed in

main() and the further program is divided into functions.

Following above tips, we can write an efficient program in C.

UNIT II

ARRAYS

Introduction to Linear and Non- Linear Data Structures

 Data structures are classified into two types linear data structure and Non-

Linear data structure. In a linear data structure, the elements form a sequence. Such

linear data structure can be represented in memory in two ways.

 By having linear relationship between elements represented by means of

sequential memory locations and these are called arrays.

 By having relationship between elements that do not have sequential

memory and represented with the help of pointers, and these are called linked lists.

 Arrays are useful when the number of elements is fixed. And the linked lists

are preferable when the number of items in the collection is not fixed.

 There are other non-linear data structures like trees and graphs can be

performed on these two data structures viz. arrays and linked lists.

The different operations that can be performed on data structures are

traversal (moving across each element), searching, and insertion, deletion, merging

and sorting elements.

One- Dimensional Arrays:

 An array is collection of finite number of elements of similar type that are

stored in adjacent memory locations. Where each location is identified with a

unique number called index number. The first index number is called lower bound

and it is always ZERO and the last index of the array elements is called upper

bound and it is always equal to number of elements -1.

In C, we use a special symbol [] to declare and manipulate the arrays.

The [] are used to specify size of array or bounds or number of elements in

that array while declaring and the same [] are used to specify the index number of

each element in the array.

In the example int arr[10]; there is an array of 10 integer elements array is

declared. And all the elements will have sequential memory allocated.

It looks in memory as shown below:

Where the 100,102 etc are the memory addresses of each element.

The array can also be initialized while declaring as shown below:

 int arr[5]={10,20,30,40,50};

an array of characters is called a string and it can be initialized in 2 ways :

 char name[]=”geetha”;

char name[]={’g’,’e’,’e’,’t’,’h’,’a’};

when a string is stored in a char array, the C-RE placed a NULL value at end of

string for identification.

The address of the first element in the array is called BASE address.

Array Operations:

 There are different operations that can be performed on elements of array:

Traversal : to display or count or to do any other process, each data element need

to be accessed. This accessing each element is called traversal.

Algorithm for traversal:

1. Initialize counter

I=LB

2. Repeat steps 3 & 4 while I < UB

3. Visit element

Apply process to arr[I]

4. Increase counter I

I=I+1

5. Exit

Insertion: insertion is adding an element in the array in specified location. Inserting

a value at last element is simple. But inserting an element at middle of the array is

more expensive. For inserting a value in middle of the array, we must move all

elements from Nth location to their next locations first and then insert value at

specified location. Provided that, the array must have enough space to move

elements.

Algorithm:

1. Initialize counter

I=UB

2. Repeat steps 3 & 4 while I >POS

3. Visit element

Move arr[I] into arr [I + 1]

4. Decrease counter I

I=I-1

5. Set arr[POS-1] = NEW_VALUE

6. Exit

Deletion : deletion from array is removal of an element at specified location.

Literally we have nothing to do in deleting. Simply if we move all elements to its

previous locations from the position of deletion, the element at specified position

will be deleted automatically.

Algorithm:

1. Initialize counter

I=POS-1

2. Repeat steps 3 & 4 while I < UB

3. Visit element

Move arr[I + 1] into arr [I]

4. Increase counter I

I=I+1

5. Exit

**The searching and sorting are discussed later

Two- Dimensional arrays:

 When a program needs much data to be managed in a tabular format, then

the arrays can be used by providing 2 references for each data element for flexible

manipulation.

 For providing 2 references for each data element, we may declare the array

with 2 bounds specified. For example int arr[2][3];

 In this case, it is treated as a 2 dimensional array, and mathematically it is

treated as a MATRIX, that has rows and columns.

 Though we treat a 2 dimensional array as a matrix, i.e. in tabular form, the

memory allocated in RAM will be sequential. We LOGICALLY treat it as a

matrix.

In the above declaration int a[2][3]; the logical view of the matrix is as

follows:

Arr[0][0] Arr[0][1] Arr[0][2]

Arr[1][0] Arr[1][1] Arr[1][2]

But it is represented in memory sequentially as :

Arr[0][0] Arr[0][1] Arr[0][2] Arr[1][0] Arr[1][1] Arr[1][2]

100 102 104 106 108 110

The 2 D array can be used as row major matrix or column major matrix, where in

row major, the first dimension refers to row and 2nd refers to column and in the

column major matrix first dimension refers to column number and the 2nd

dimension refers to row.

When using a 2D array, we use 2 loops to refer each dimension in the

matrix. When using a 2 D Array as a matrix if many of the values in a matrix are

ZEROs then it is represented as a sparse matrix.

The term transposing matrix is used when a matrix is converted such that,

the first matrix’s rows and columns are treated as columns and rows of second

matrix.

This is not in your syllabus. But something important in DS. So understand

properly.

A matrix is a two-dimensional data object made of m rows and n columns,

therefore having total m x n values. If most of the elements of the matrix have 0

value, then it is called a sparse matrix.

Why to use Sparse Matrix instead of simple matrix ?

• Storage: There are lesser non-zero elements than zeros and thus lesser memory

can be used to store only those elements.

• Computing time: Computing time can be saved by logically designing a data

structure traversing only non-zero elements..

Representing a sparse matrix by a 2D array leads to wastage of lots of

memory as zeroes in the matrix are of no use in most of the cases. So, instead of

storing zeroes with non-zero elements, we only store non-zero elements. This

means storing non-zero elements with triples- (Row, Column, value).

Sparse Matrix Representations can be done in many ways. Following is one

of the ways:

2D array is used to represent a sparse matrix in which there are three rows named

as

• Row: Index of row, where non-zero element is located

• Column: Index of column, where non-zero element is located

• Value: Value of the non zero element located at index – (row,column)

https://www.geeksforgeeks.org/data-structures/#Matrix

This is very much useful in managing GRAPHS.

Multidimensional Arrays: the arrays that have more than 2 dimensions called multi

dimensional arrays. For example a 3 dimensional array is declared as int a[2][3][4];

 Each element in a 3D array has three referencing indexes i.e. subscripts. The

first specifies the PLANE number the second specifies ROW number and the 3rd

specified the column number.

Pointers and Arrays:

 The pointer is a special data type used for dynamic memory management. In

C, when an array is declared, there will be a pointer declared with the same name

of array and it will be held with the base address of the array. i.e. an array is a

synonymous pointer.

 When using an array, we use [] to specify the index number of the element.

When using pointer syntax, we use pointer incremented by the index number. As

pointer arithmetic operation is done on no. of bytes based on type of pointer, if it is

an int *p; and held with address 100, and if we do p+1, it will be increased by 2

bytes and it becomes 102.

 The pointers can be done only with addition operation. We can not do

subtraction, multiplication or division on pointers, as it may lead to negative

numbers, where the memory addresses can not be in negative values.

 So we can use the synonymous pointer to access array elements. For

example, a[2] can be accessed as * (a + 2).

Overview of Pointers:

A pointer is a variable which contains address of some memory location.

Pointers are popular in programming because they provide direct access to memory

locations, support dynamic memory management and these improve efficiency of

some routines.

 In main memory each byte is identified with a byte number. When we

declare a variable, the first byte number reserved for that variable is called address

of that variable. it can be fetched with the operator &. The & takes variable name

and returns its address. Similarly, the operator * is called de-referencing operator,

it takes address and returns the value at that address. The & means ADDRESS OF

and the * means VALUE AT.

 The pointer arithmetic operation is different from normal arithmetic

operation. When we manipulate the pointers without *, the addresses are

manipulated. That is when a pointer ‘p’ is done ++, it increases the address in that

pointer, based on data type of the pointer. If it is an integer pointer increases by 2

bytes and if a float, increases by 4 bytes.

 When the pointer is manipulated with ‘*’, then the values pointed by that

pointer are manipulated. A pointer declared in a function can point to any memory

location directly even if that memory has no scope in that function.

So the function call by reference has more advantage than function call by

value to do process on the variables that have their scope in other functions. In call

by value, the variable names are passed as arguments and received into formal

arguments and formal arguments are processed. But in call by reference, the

address are passed as arguments and received into pointers at function definition

and the data is processed through pointers. So the advantage of call by reference

OR manipulating data used pointers is that the original values are manipulated with

pointers, wherein the call by value doesn’t affect original values.

Something important is to remember is when a pointer is freed, it should not

be left as it is, and these are called dangling pointers and these misbehave in

program. A good programmer must assign NULL to the pointer once it is freed.

CHAPTER 2

Linked Lists

Linked Lists

A linked list is a very flexible, dynamic data structure in which elements

(called nodes) form a sequential list. In a linked list, each node is allocated space as

it is added to the list. Every node in the list points to the next node in the list.

Therefore, in a linked list, every node contains data of the node and a pointer to next

node. The last node in the list contains a NULL pointer to indicate that it is the

end or tail of the list. The total number of nodes that may be added to a list is

limited only by the amount of memory available.

Advantage: Easier to insert or delete data elements

Disadvantage: Slow search operation and requires more memory space

A linked list, in simple terms, is a linear collection of data elements. These data

elements are called nodes. Linked list is a data structure which in turn can be used

to implement other data structures. Thus, it acts as a building block to implement

data structures such as stacks, queues, and their variations. A linked list can be

perceived as a sequence of nodes in which each node contains one or more data

fields and a pointer to the next node.

SINGLE LINKED LIST

A single linked list is the simplest type of linked list in which every node

contains some data and a pointer to the next node. A singly linked list allows

traversal of data only in one way. So these are unidirectional.

DOUBLE LINKED LIST

A double linked list is similar to single linked list but has two pointers in the

node, where the next pointer points to next node and the previous pointer points to

previous node. A double linked list as it has next and previous pointers , we can

traverse in both directions, so these are bi-directional.

CIRCULAR LINKED LIST

Singly Linked List as Circular

In singly linked list, the next pointer of the last node points to the first node.

The next pointer of the last node points to the first node.

Doubly Linked List as Circular

In doubly linked list, the next pointer of the last node points to the first node

and the previous pointer of the first node points to the last node making the circular

in both directions.

As per the above illustration, following are the important points to be

considered.

• The last link's next points to the first link of the list in both cases of singly as well

as doubly linked list.

• The first link's previous points to the last of the list in case of doubly linked list.

Basic Operations

Following are the important operations supported by a circular list.

• insert − Inserts an element at the start of the list.

• delete − Deletes an element from the start of the list.

• display − Displays the list.

Algorithms for each operation :

insertFirst(data):

Begin

 create a new node

 node -> data := data

 if the list is empty, then

 head := node

 next of node = head

 else

 temp := head

 while next of temp is not head, do

 temp := next of temp

 done

 next of node := head

 next of temp := node

 head := node

 end if

End

deleteFirst():

Begin

 if head is null, then

 it is Underflow and return

 else if next of head = head, then

 head := null

 deallocate head

 else

 ptr := head

 while next of ptr is not head, do

 ptr := next of ptr

 next of ptr = next of head

 deallocate head

 head := next of ptr

 end if

End

isplay():

Begin

 if head is null, then

 Nothing to print and return

 else

 ptr := head

 while next of ptr is not head, do

 display data of ptr

 ptr := next of ptr

 display data of ptr

 end if

End

Applications of linked list in computer science –

1. Implementation of stacks and queues

2. Implementation of graphs : Adjacency list representation of graphs is most

popular which is uses linked list to store adjacent vertices.

3. Dynamic memory allocation : We use linked list of free blocks.

4. Maintaining directory of names

5. Performing arithmetic operations on long integers

6. Manipulation of polynomials by storing constants in the node of linked list

7. representing sparse matrices

Applications of linked list in real world-

1. Image viewer – Previous and next images are linked, hence can be accessed by

next and previous button.

2. Previous and next page in web browser – We can access previous and next url

searched in web browser by pressing back and next button since, they are linked

as linked list.

3. Music Player – Songs in music player are linked to previous and next song. you

can play songs either from starting or ending of the list.

Atomic Linked List:

 When we develop a linked list we place data member within the node

structure, where the data member can be of any primitive data type variable. In this

case, we can store that specific data type value into that data member of that node.

We may have any number of data members and store data into all data members in

to that node.

 But in atomic linked list, we don’t place the data member of any primitive

data type. Instead of primitive data member, we create a union data member within

that node. Where the union is created to store elements of all primitive types, and

use can use only one at a time. In this case,

https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/graph-and-its-representations/

 The node structure will have an extra variable to remember the type data

stored into the member of that union, so that in C, we can use appropriate format

specifier to display data.

union atomicNode

{

 char cdata;

 int idata;

};

struct node

{

 int type;

 union atomicNode data;

 struct node *next;

};

Here in each node, the type of data, data and then next pointer to link to next node

are stored into each node.

Linked List in Arrays:

 A typical linked list includes 2 parts, the data value and the next pointer. The

same linked list can be implemented with arrays without using pointers, where the

data part is managed by an array and the next elements address is managed by

another array.

 But as the arrays have indexing mechanism to identify each element, it raises

burden on system to manage 2 arrays, one to store data and the other to store

address and manipulate as a linked list. Instead of this storage of address of

element of one array into another and fetching data of one array based on the

address stored in same index of second array, we can simply use indexes of first

array itself.

Linked List versus Array:

Arrays store elements in contiguous memory locations, resulting in easily

calculable addresses for the elements stored and this allows a faster access to an

element at a specific index. Linked lists are less rigid in their storage structure

and elements are usually not stored in contiguous locations, hence they need to be

stored with additional tags giving a reference to the next element. This difference

in the data storage scheme decides which data structure would be more suitable

for a given situation.

Data storage scheme of an array

Data storage scheme of a linked list

 Major differences are listed below:

• Size: Since data can only be stored in contiguous blocks of memory in an array,

its size cannot be altered at runtime due to risk of overwriting over other data.

However in a linked list, each node points to the next one such that data can exist

at scattered (non-contiguous) addresses; this allows for a dynamic size which can

change at runtime.

• Memory allocation: For arrays at compile time and at runtime for linked lists. but,

dynamically allocated array also allocates memory at runtime.

• Memory efficiency: For the same number of elements, linked lists use more

memory as a reference to the next node is also stored along with the data.

However, size flexibility in linked lists may make them use less memory overall;

this is useful when there is uncertainty about size or there are large variations in

https://www.geeksforgeeks.org/array-data-structure/
https://www.geeksforgeeks.org/data-structures/linked-list/

the size of data elements; memory equivalent to the upper limit on the size has to

be allocated (even if not all of it is being used) while using arrays, whereas linked

lists can increase their sizes step-by-step proportionately to the amount of data.

• Execution time: Any element in an array can be directly accessed with its index;

however in case of a linked list, all the previous elements must be traversed to

reach any element. Also, better cache locality in arrays (due to contiguous

memory allocation) can significantly improve performance. As a result, some

operations (such as modifying a certain element) are faster in arrays, while some

other (such as inserting/deleting an element in the data) are faster in linked lists.

Following are the points in favour of Linked Lists.

(1) The size of the arrays is fixed: So we must know the upper limit on the

number of elements in advance. Also, generally, the allocated memory is equal to

the upper limit irrespective of the usage, and in practical uses, the upper limit is

rarely reached.

(2) Inserting a new element in an array of elements is expensive because a

room has to be created for the new elements and to create room existing elements

have to be shifted.

For example, suppose we maintain a sorted list of IDs in an array id[].

id[] = [1000, 1010, 1050, 2000, 2040, …..].

And if we want to insert a new ID 1005, then to maintain the sorted order,

we have to move all the elements after 1000 (excluding 1000).

Deletion is also expensive with arrays until unless some special techniques

are used. For example, to delete 1010 in id[], everything after 1010 has to be

moved.

So Linked list provides the following two advantages over arrays

1) Dynamic size

2) Ease of insertion/deletion

Linked lists have following drawbacks:

1) Random access is not allowed. We have to access elements sequentially

starting from the first node. So we cannot do a binary search with linked lists.

2) Extra memory space for a pointer is required with each element of the list.

3) Arrays have better cache locality that can make a pretty big difference in

performance.

4) It takes a lot of time in traversing and changing the pointers.

5) It will be confusing when we work with pointers.

UNIT III

STACKS

Introduction to Stacks:

A stack is a linear data structure in which insertion and deletion of elements

are done at only one end, which is known as the top of the stack. Stack is called a

last-in, first-out (LIFO) structure because the last element which is added to the

stack is the first element which is deleted from the stack.

A stack supports three basic operations: push, pop, and peep or peek. The push

operation adds an element to the top of the stack. The pop operation removes the

element from the top of the stack. And the Top or peep operation returns the value

of the topmost element of the stack (without deleting it). As the data when

represented from zero-th index till the TOP, it looks as the element is deleted.

Stack as an Abstract Data Type:

 A Stack can also be defined as ADT. A stack of elements of a particular data

type is a finite (limited/ known count) sequence of elements with below specified

operations:

 Initialize the stack to be empty

 Determine whether the stack is empty or not

 Determine whether the stack is full or not

If stack is not full, then add an element / node at end of stack called TOP. And this

operation is called PUSH

If stack is not empty, then retrieve the element at TOP, called peek / peek

If stack is not empty, then remove an element from TOP, called POP.

Representation of Stacks through Arrays:

In the computer’s memory, stacks can be implemented using arrays or linked

lists.

The process of storing data onto a stack is called push() and removing data from

stack is called pop(). The algorithm for implementing the stack ADT for each

operation is as follows:

Algorithm for PUSH:

IF TOP = MAX-1 // if stack is full

PRINT OVERFLOW;

Else

TOP = TOP + 1;

 STACK[TOP]=VAL;

End if;

END //End of Push

Algorithm Pop()

IF TOP <= -1 Then // If stack is empty

PRINT UNDERFLOW or EMPTY

Else // if stack not empty

VAL = STACK[TOP]; // move top element in to a val variable

PRINT VAL,”deleted”

TOP = TOP - - OR (TOP-1); // decrement top value by 1.

End if;

END//End of Pop

Implementation of stack through arrays :

#include<stdio.h>

#include<conio.h>

void menu();

void push(int);

int pop();

int peek();

void disp();

int stk[5],top=0;

void main()

{

 clrscr();

 menu();

}

void menu()

{

 printf("MENU\n");

 printf("1 PUSH\n");

 printf("2 POP\n");

 printf("3 PEEK\n");

 printf("0 CLOSE\n");

 int ch;

 printf("Enter your choice :");

 scanf("%d",&ch);

 if(ch==0)

 {

 exit(0);

 }

 else if(ch==1)

 {

 int x;

 printf("Enter a number :");

 scanf("%d",&x);

 push(x);

 disp();

 }

 else if(ch==2)

 {

 int x=pop();

 printf("value popped : %d\n",x);

 disp();

 }

 else if(ch==3)

 {

 printf("Value peeked : %d\n",peek());

 menu();

 }

 else

 {

 printf("Wrong Choice\n");

 menu();

 }

}

void push(int x)

{

 if(top<5)

 {

 stk[top]=x;

 top++;

 printf("pushed %d\n",x);

 }

 else

 {

 printf("stack is full\n");

 menu();

 }

}

int pop()

{

 int x=0;

 if(top>0)

 {

 x=stk[--top];

 }

 else

 {

 printf("Stack is empty\n");

 menu();

 }

 return x;

}

int peek()

{

 return stk[top-1];

}

void disp()

{

 printf("values on stack are :");

 for(int i=0;i<top;i++)

 printf("%d ", stk[i]);

 printf("\n");

 menu();

}

Representation of Stacks through Linked Lists:

Instead of using array, we can also use linked list to implement stack. Linked

list allocates the memory dynamically. However, time complexity in both the

scenario is same for all the operations i.e. push, pop and peek.

In linked list implementation of stack, the nodes are maintained non-

contiguously in the memory. Each node contains a pointer to its immediate

successor node in the stack. Stack is said to be over flown if the space left in the

memory heap is not enough to create a node.

Adding a node to the stack is referred to as push operation. Pushing an element

to a stack in linked list implementation is different from that of an array

implementation. In order to push an element onto the stack, the following steps are

involved.

1. Create a node first and allocate memory to it.

2. If the list is empty then the item is to be pushed as the start node of the list. This

includes assigning value to the data part of the node and assign null to the address

part of the node.

3. If there are some nodes in the list already, then we have to add the new element in

the beginning of the list (to not violate the property of the stack). For this purpose,

assign the address of the starting element to the address field of the new node and

make the new node, the starting node of the list.

Deleting a node from the top of stack is referred to as pop operation. Deleting a

node from the linked list implementation of stack is different from that in the array

implementation. In order to pop an element from the stack, we need to follow the

following steps :

1. Check for the underflow condition: The underflow condition occurs when we try to

pop from an already empty stack. The stack will be empty if the head pointer of the

list points to null.

2. Adjust the head pointer accordingly: In stack, the elements are popped only from

one end, therefore, the value stored in the head pointer must be deleted and the

node must be freed. The next node of the head node now becomes the head node.

Literally, the stack implementation on linked list is very similar to normal

linked list, but in normal linked list, the next head holds the first node and each

node links to next node and in stack implementation, the top points to last node and

the link pointer points to previous node.

Code :

#include <stdio.h>

#include<conio.h>

#include<alloc.h>

#include<process.h>

struct Node

{

 int data;

 struct Node* link;

};

struct Node* top;

void push(int data)

{

 struct Node* temp;

 temp = (Node*) malloc(sizeof(Node));

 temp->data = data;

 temp->link = top;

 top = temp;

}

int isEmpty()

{

 return top == NULL;

}

int peek()

{

 return top->data;

}

void pop()

{

 struct Node* temp;

 if (top == NULL)

 {

 printf("\nStack Underflow");

 exit(1);

 }

 else

 {

 temp = top;

 top = top->link;

 temp->link = NULL;

 free(temp);

 }

}

void display()

{

 struct Node* temp;

 if (top == NULL)

 {

 printf("\nStack Underflow");

 exit(1);

 }

 else

 {

 temp = top;

 while (temp != NULL)

 {

 // Print node data

 printf("%d->", temp->data);

 temp = temp->link;

 }

 }

}

// Driver Code

int main()

{

 top=NULL;

 // Push the elements of stack

 clrscr();

 push(11);

 push(22);

 push(33);

 push(44);

 // Display stack elements

 display();

 // Print top element of stack

 printf("\nTop element is %d\n",peek());

 // Delete top elements of stack

 pop();

 pop();

 // Display stack elements

 display();

 printf("\nTop element is %d\n",peek());

 return 0;

}

Applications of Stacks

Following is the various Applications of Stack in Data Structure:

o Evaluation of Arithmetic Expressions

o Backtracking

o Delimiter Checking

o Reverse a Data

o Processing Function Calls

Evaluation of Arithmetic Expressions

A stack is a very effective data structure for evaluating arithmetic

expressions in programming languages. An arithmetic expression consists of

operands and operators.

 Evaluation of expressions based on precedence of operators and

converting the expression from infix into either pre-fix notation or post-fix notation

can be very flexibly done using stacks.

Backtracking

Backtracking is another application of Stack. It is a recursive algorithm that

is used for solving the optimization problem. For example the back button in a

browser.

Delimiter Checking

The common application of Stack is delimiter checking, i.e., parsing that

involves analyzing a source program syntactically. It is also called parenthesis

checking. When the compiler translates a source program written in some

programming language such as C, C++ to a machine language, it parses the

program into multiple individual parts such as variable names, keywords, etc. By

scanning from left to right. The main problem encountered while translating is the

unmatched delimiters. We make use of different types of delimiters include the

parenthesis checking (,), curly braces {,} and square brackets [,], and common

delimiters /* and */. Every opening delimiter must match a closing delimiter, i.e.,

every opening parenthesis should be followed by a matching closing parenthesis.

Also, the delimiter can be nested. The opening delimiter that occurs later in the

source program should be closed before those occurring earlier. To perform a

delimiter checking, the compiler makes use of a stack. When a compiler translates

a source program, it reads the characters one at a time, and if it finds an opening

https://www.javatpoint.com/data-structure-tutorial

delimiter it places it on a stack. When a closing delimiter is found, it pops up the

opening delimiter from the top of the Stack and matches it with the closing

delimiter.

Reverse a Data

To reverse a given set of data, we need to reorder the data so that the first

and last elements are exchanged, the second and second last element are

exchanged, and so on for all other elements.

Processing Function Calls:

Stack plays an important role in programs that call several functions in

succession. Suppose we have a program containing three functions: A, B, and C.

function A invokes function B, which invokes the function C.

When we invoke function A, which contains a call to function B, then its

processing will not be completed until function B has completed its execution and

returned. Similarly for function B and C. So we observe that function A will only

be completed after function B is completed and function B will only be completed

after function C is completed. Therefore, function A is first to be started and last to

be completed. To conclude, the above function activity matches the last in first out

behavior and can easily be handled using Stack.

Converting infix expr3ession into either prefix or postfix expressions during

evaluation of arithmetic expression:

#include<stdio.h>

#include<conio.h>

#include<ctype.h>

#include<string.h>

#include<alloc.h>

char pop();

void push(char);

int getPriority(char);

void infixToPostfix(char *,char *);

void infixToPrefix(char *,char *);

char stk[40];

int top=-1;

void main()

{

 char inf[40]="a*(b+c)";

 char pre[40],pos[40];

 clrscr();

 printf("infix : %s\n",inf);

 infixToPostfix(inf,pos);

 printf("postfix : %s\n",pos);

 infixToPrefix(inf,pre);

 printf("prefix : %s\n",pre);

}

char pop()

{

 char ch=stk[top];

 top--;

 return ch;

}

void push(char ch)

{

 top++;

 stk[top]=ch;

}

int getPriority(char ch)

{

 switch(ch)

 {

 case '+':

 case '-': return 1;

 case '*':

 case '/': return 2;

 case '^' : return 3;

 }

 return 0;

}

void infixToPostfix(char *inf, char *pos)

{

 int i,ind=0;

 for(i=0 ; i<strlen(inf) ; i++)

 {

 char ch=inf[i];

 if(isalpha(ch))

 {

 pos[ind]=ch;

 ind++;

 }

 else

 {

 if(ch=='(')

 push(ch);

 else if(ch==')')

 {

 while(stk[top] !='(')

 {

 pos[ind]=pop();

 ind++;

 }

 pop();

 }

 else

 {

 if(getPriority(stk[top]) < getPriority(ch))

 push(ch);

 else

 {

 while(getPriority(stk[top]) > getPriority(ch))

 {

 pos[ind]=pop();

 ind++;

 }

 push(ch);

 }

 }

 }

 }//for

 while(top>-1)

 {

 pos[ind]=pop();

 ind++;

 }

 pos[ind]='\0';

}

void infixToPrefix(char *inf, char *pre)

{

 int i,ind=0;

 for(i=strlen(inf)-1 ; i>-1 ; i--)

 {

 char ch=inf[i];

 if(isalpha(ch))

 {

 pre[ind]=ch;

 ind++;

 }

 else

 {

 if(ch==')')

 push(ch);

 else if(ch=='(')

 {

 while(stk[top] !=')')

 {

 pre[ind]=pop();

 ind++;

 }

 pop();

 }

 else

 {

 if(getPriority(stk[top]) < getPriority(ch))

 push(ch);

 else

 {

 while(getPriority(stk[top]) > getPriority(ch))

 {

 pre[ind]=pop();

 ind++;

 }

 push(ch);

 }

 }

 }

 }//for

 while(top>-1)

 {

 pre[ind]=pop();

 ind++;

 }

 pre[ind]='\0';

 strrev(pre);

}

Stacks and Recursion :

Many programming languages implement recursion by means of stacks.

Generally, whenever a function (caller) calls another function (callee) or itself as

callee, the caller function transfers execution control to the callee. This transfer

process may also involve some data to be passed from the caller to the callee.

This implies, the caller function has to suspend its execution temporarily and

resume later when the execution control returns from the callee function. Here, the

caller function needs to start exactly from the point of execution where it puts itself

on hold. It also needs the exact same data values it was working on. For this

purpose, an activation record (or stack frame) is created for the caller function.

This activation record keeps the information about local variables, formal

parameters, return address and all information passed to the caller function.

.

The complexity is counted as what amount of extra space is required for a

module to execute. In case of iterations, the compiler hardly requires any extra

space. The compiler keeps updating the values of variables used in the iterations.

But in case of recursion, the system needs to store activation record each time a

recursive call is made. Hence, it is considered that space complexity of recursive

function may go higher than that of a function with iteration.

But the reason for recursion is, it makes a program more readable and

because of latest enhanced CPU systems, recursion is more efficient than

iterations.

Ex:

int fact(int n){

 if (n==1)

 return 1;

 return n * fact(n-1);

}

QUEUES

Introduction:

A queue is a FIFO (First-In, First-Out) data structure in which the element

that is inserted first is the first one to be taken out. The elements in a queue are

added at one end called the REAR and removed from the other end called the

FRONT.

Analogies using concept of queues:

People waiting for a bus. The first person standing in the line will be the first

one to get into the bus.

Cars lined at a toll bridge. The first car to reach the bridge will be the first to

leave.

 Taking a Tickets in the Cinema Theater Queue. The First Person will collect

the Ticket and Enter into the Hall.

The different operations done on queue data structure are generally called

qinsert() or enqueue() and qdelete() or dequeue().

Queue as an Abstract data Type:

A Queue can also be defined as ADT. A queue of elements of a particular

data type is a finite (limited/ known count) sequence of elements with below

specified operations:

 Initialize the queue to be empty

 Determine whether the queue is empty or not

 Determine whether the queue is full or not

If queue is not full, then add an element / node through the rear pointer of queue.

And this operation is called qinsert() / enqueu()

If queue is not empty, then remove an element from front , called qdelete() /

deque().

procedure Enqueue(element)

if rear = MAX-1 then // if queue is full

call QUEUE_FULL;

Else // queue is not full

rear= rear + 1; //forward rear pointer by 1.

Q[rear]<- element; // store element at rear end

End If;

procedure Dequeue()

if front=-1 and rear=-1 then //if queue empty

call Queue is Empty;

else if front==rear //if rear and front both are equal

set rear =-1 and front=-1

else //if queue is not empty

front=front+1; //forward front pointer by 1

End if;

** but a simple queue has a problem that unless it is fully emptied, it cannot be

used fully.

Representation of Queues:

Queue implementation with array:

int a[5];

int f,r;

void menu();

void qinsert()

void qdelete()

void disp();

void main()

{

 f=r=0;

 menu();

}

void menu()

{

 int ch;

 printf("MENU\n");

 printf("1 QINSERT\n");

 printf("2 QDELETE\n");

 printf("Enter your choice :");

 scanf("%d",&ch);

 if(ch==1)

 qinsert();

 else if(ch==2)

 qdelete();

}

void qinsert()

{

 if(r<5)

 {

 printf("Enter a value :");

 scanf("%d",&a[r]);

 r++;

 disp();

 }

 else

 {

 printf("QUEUE IS FULL\n");

 }

}

void qdelete()

{

 if(f!=r)

 {

 f++;

 disp();

 }

 else

 {

 printf("QUEUE is EMPTY\n");

 f=r=0;

 menu();

 }

}

void disp()

{

 int i;

 for(i=f; i < r ;i++)

 printf("%d ", a[i]);

 menu();

}

Queue implementation on linked list:

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

struct node{

 int data;

 struct node *n;

};

typedef struct node node;

void qinsert(int);

void qdelete();

void disp();

node *front,*rear;

void main()

{

 front=rear=NULL;

 clrscr();

 qinsert(10);

 qinsert(20);

 qinsert(30);

 qinsert(40);

 disp();

 qdelete();

 qdelete();

 disp();

}

void qinsert(int data)

{

 node *temp=(node*) malloc(sizeof(node));

 temp->n=NULL;

 temp->data=data;

 printf("inserted %d\n",data);

 if(front==NULL)

 {

 front=temp;

 rear=temp;

 }

 else

 {

 rear->n=temp;

 rear=temp;

 }

}

void qdelete()

{

 node *temp;

 temp=front;

 if(front != rear)

 {

 printf("deleted %d\n",temp->data);

 front=front->n;

 }

 else

 printf("queue is empty");

 free(temp);

}

void disp(){

 node *temp=front;

 while(temp!=NULL)

 {

 printf("%d ",temp->data);

 temp=temp->n;

 }

 printf("\n");

}

Circular Queues:

A simple queue when implemented, the logic or algorithm is such that,

unless the queue is fully emptied, it cannot be used fully. For example if a queue

has five elements and 4 elements are stored in that and then 3 are removed, though

there are 4 empty places in the queue, the algorithm / logic permits only 1 values to

be enqueued.

 To make use of the simple queue fully, each time the dequeue (delete queue)

is done, all the elements are to be moved to its previous locations. This “moving

elements” each time to its previous locations give burden on system.

 To overcome this problem, the circular queues are implemented. In this the

logic is implemented such that, the rear pointer moves to first location if first is

empty so that the queue is logically formed as a circle.

Implementation:

#include<stdio.h>

#include<conio.h>

void disp();

int que[5], front,rear,status;

void menu();

void qinsert();

void qdelete();

void main()

{

 clrscr();

 menu();

}

void menu()

{

 int ch;

 printf("\n\nMENU");

 printf("\n1 qinsert");

 printf("\n2.qdelete");

 printf("\nEnter any remaing key to exit");

 printf("\nEnter your choice : ");

 scanf("%d",&ch);

 if(ch==1)

 qinsert();

 else if(ch==2)

 qdelete();

}

void qinsert()

{

 if(rear==5)

 if(front!=0)

 rear=0;

 if(rear<5 && rear!=front || front==0 && rear==0)

 {

 printf("Enter element : ");

 scanf("%d",&que[rear]);

 rear++;

 status=1;

 disp();

 }

 else

 {

 printf("\nQUEUE is FULL");

 menu();

 }

}

void qdelete()

{

 if(front>=5)

 front=0;

 if(front!=rear || status==1)

 {

 front++;

 status=0;

 }

 if(front==rear)

 {

 printf("\nQUEUE is empty");

 front=rear=0;

 menu();

 }

 else

 disp();

}

void disp()

{

 int i;

 printf("\nElements in QUEUE : ");

 if(front>=rear)

 {

 for(i=front; i<5; i++)

 printf("%d ",que[i]);

 for(i=0; i<rear; i++)

 printf("%d ",que[i]);

 }

 else

 for(i=front; i<rear; i++)

 printf("%d ",que[i]);

 menu();

}

Applications of queues :

Queue is used when things don’t have to be processed immediately, but have

to be processed in First In First Out order like Breadth First Search. This property

of Queue makes it also useful in following kind of scenarios.

1) When a resource is shared among multiple consumers. Examples include CPU

scheduling, Disk Scheduling.

2) When data is transferred asynchronously (data not necessarily received at same

rate as sent) between two processes. Examples include IO Buffers, pipes, file IO,

etc.

3) In Operating systems:

 a) Semaphores

 b) FCFS (first come first serve) scheduling, example: FIFO queue

 c) Spooling in printers

 d) Buffer for devices like keyboard

4) In Networks:

 a) Queues in routers/ switches

 b) Mail Queues

5) Variations: (Deque, Priority Queue, Doubly Ended Priority Queue)

http://en.wikipedia.org/wiki/Queue_%28data_structure%29
http://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Semaphore_(programming)#:~:text=In%20computer%20science%2C%20a%20semaphore,as%20a%20multitasking%20operating%20system.
https://www.geeksforgeeks.org/deque-set-1-introduction-applications/
https://www.geeksforgeeks.org/priority-queue-set-1-introduction/
https://www.geeksforgeeks.org/double-ended-priority-queue/

6) Memory Management: The unused memory locations in the case of ordinary

queues can be utilized in circular queues.

7) Traffic system: In computer controlled traffic system, circular queues are used to

switch on the traffic lights one by one repeatedly as per the time set.

8) CPU Scheduling: Operating systems often maintain a queue of processes that are

ready to execute or that are waiting for a particular event to occur.

Double Ended Queues-Deques:

In the queue, the insertion takes place from one end while the deletion takes place

from another end. The end at which the insertion occurs is known as the rear

end whereas the end at which the deletion occurs is known as front end.

The dequeue stands for Double Ended Queue.

Deque is a linear data structure in which the insertion and deletion

operations are performed from both ends. We can say that deque is a generalized

version of the queue.

 In DEQUEUEs, the insert can be done either from front or from rear and

also the deleting can be done either from front or rear.

 But the DEQUEUE operation is not considered as a standard QUEUE

operation, as the dequeues break the basic FIFO rule of queues.

The following are the six functions that we have used in the below program:

o enqueue_front(): It is used to insert the element from the front end.

o enqueue_rear(): It is used to insert the element from the rear end.

o dequeue_front(): It is used to delete the element from the front end.

o dequeue_rear(): It is used to delete the element from the rear end.

o getfront(): It is used to return the front element of the deque.

o getrear(): It is used to return the rear element of the deque.

Priority Queues:

A priority queue is an abstract data type that behaves similarly to the normal

queue except that each element has some priority, i.e., the element with the highest

priority would come first in a priority queue. The priority of the elements in a

priority queue will determine the order in which elements are removed from the

priority queue.

The priority queue supports only comparable elements, which means that the

elements are either arranged in an ascending or descending order.

For example, suppose we have some values like 1, 3, 4, 8, 14, 22 inserted in

a priority queue with an ordering imposed on the values is from least to the

greatest. Therefore, the 1 number would be having the highest priority while 22

will be having the lowest priority.

The characteristics are :

o Every element in a priority queue has some priority associated with it.

o An element with the higher priority will be deleted before the deletion of the lesser

priority.

o If two elements in a priority queue have the same priority, they will be arranged

using the FIFO principle.

If the values of the priority queue are 1, 3, 4, 8, 14, 22

All the values are arranged in ascending order. Now, we will observe how the

priority queue will look after performing the following operations:

o poll(): This function will remove the highest priority element from the priority

queue. In the above priority queue, the '1' element has the highest priority, so it will

be removed from the priority queue.

o add(2): This function will insert '2' element in a priority queue. As 2 is the smallest

element among all the numbers so it will obtain the highest priority.

o poll(): It will remove '2' element from the priority queue as it has the highest

priority queue.

o add(5): It will insert 5 element after 4 as 5 is larger than 4 and lesser than 8, so it

will obtain the third highest priority in a priority queue.

Implementation of Priority Queue

The priority queue can be implemented in four ways that include arrays,

linked list, heap data structure and binary search tree. The heap data structure is the

most efficient way of implementing the priority queue, so we will implement the

priority queue using a heap data structure in this topic. Now, first we understand

the reason why heap is the most efficient way among all the other data structures.

Applications of priority queues:

When the graph is stored in the form of adjacency list or matrix, priority

queue can be used to extract minimum efficiently when implementing Dijkstra’s

algorithm.

Prim’s algorithm: It is used to implement Prim’s Algorithm to store keys of

nodes and extract minimum key node at every step.

Data compression : It is used in Huffman codes which is used to compresses

data.

Artificial Intelligence : A* Search Algorithm : The A* search algorithm

finds the shortest path between two vertices of a weighted graph, trying out the

most promising routes first. The priority queue (also known as the fringe) is used

to keep track of unexplored routes, the one for which a lower bound on the total

path length is smallest is given highest priority.

Heap Sort : Heap sort is typically implemented using Heap which is an

implementation of Priority Queue.

Operating systems: It is also use in Operating System for load

balancing (load balancing on server), interrupt handling.

https://www.geeksforgeeks.org/prims-algorithm-using-priority_queue-stl/
https://en.wikipedia.org/wiki/Data_compression
https://www.geeksforgeeks.org/tag/huffman-coding/
https://www.geeksforgeeks.org/a-search-algorithm/
https://www.geeksforgeeks.org/heap-sort/
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://www.geeksforgeeks.org/load-balancing-on-servers-random-algorithm/
https://practice.geeksforgeeks.org/problems/interrupt-handlers

UNIT –IV

BINARY TREES

Introduction to Non- Linear Data Structures:

 The data structures are 2 types, linear and non-linear. The arrays, linked lists

are linear data structures and the trees and graphs are non-linear data structures.

 The trees are also implemented as doubly linked lists, but the nodes here are

related with each other in a parent – child relationship.

trees.....

tree is also a data structure.... like array / linked list etc....

arrays VS LL & TREE :

in array when we store data, each entity is refered with a term "ELEMENT".

in LL the same data storage locaiton is not refered as element, rather it

is called a NODE.

node is something used to store data and have link to next / previous node.

in arrays, as all elements have sequenential memory and have index numbers to

refer each element.

but in case of LL or a tree, the memory is not sequntial, and have no indexing , so

each node will have a link to next node.

LL VS tree :

LL is linear and tree is non-linear

a LL can be uni-directional(single LL) or bi directional (doubly LL)

but trees are always unidirectional....

in LL, each NODE will have link to "next" or "previous" node.

in a tree... each node can have link to its "CHILD" node.

the first node in LL is called HEAD

the first node in tree is called ROOT

general terminalogy in trees :

the first node is called ROOT and it can have child nodes....

one child node can have further child nodes. if it has further child nodes, then

it is a child node and also a parent node.

-> root node is always.... a parent node....

but not all parents are roots.

the child node that FURTHER has no child nodes is called a LEAF.

the leaf nodes (that have no further child nodes) are called external nodes.....

the nodes that have child nodes are called internal nodes.....

EDGE : the link / path between two nodes is called EDGE

PATH : sequence of edges between given nodes

DEGREE : no. of immediate children to a parent is called degree....

SIBLINGS : another child node of its parent node.

LEVEL : the nodes at same depth from root are said to be at same level,

considering the root is at LEVEL 0.

Introduction Binary Trees,

Tree : is a DS, developed using structure nodes that hold data and links.

it is something like a double linked list... where the double LL is a linear DS

and tree is non-linear.

In Double Linked List, each node has two pointers, the previous and next.

the previous pointer points to previous node and the next pointer points to next

node. whereas in trees, the pointers are called left and right, and these pointer point

to left child and right child. In a tree a root / parent node can have any number of

children. But in DS, we use a binary tree. A tree can have any children, but the BT

can have a maximum of 2 children.

the binary trees are classified into following.....

Types of Trees,

-> full BT: the parent can have either 0 child or 1 child or 2 children

ex :

-> complete BT : (is also a FBT) the parent can have either 0 child or 2 children....

and all children filled from LEFT....

ex :

-> perfect BT : (is a FBT), the parent can have either 0 or 2 children, all children

filled from LEFT and all LEAVES (leaf nodes) must be at one level.

ex :

-> balanced BT : the deapth / height / level difference of two leaves must not be

more than 1.

-> degenerated BT : each parent has only 1 child or 0 child. it can be either

left skewed or right skewed or un-skewed

-> Binary Search Tree : (BST) : it need not be a perfect BT or CBT.... but if teh

values are stored as SORTED in the BT, then it is caleld BST. it is used for fast

searching of data. the data is stored sorted (in inorder traversal). we dont sort and

store into BST. while storing itslef, the data is sorted and stored.

-> Threaded Binary Tree (TBT) and heap trees, B- trees, B+ trees, red-black trees,

AVL trees etc.

Properties of Binary Trees:

A binary tree is a hierarchal data structure in which each node has at most

two children. The child nodes are called the left child and the right child. The

linked list representation of a binary tree in which each node has three fields:

• Pointer to store the address of the left child

• Data element

• Pointer to store the address of the right child

1. A binary tree can have a maximum of 2n nodes at level n if the level of the root is

zero.

2. When each node of a binary tree has one or two children, the number of leaf nodes

(nodes with no children) is one more than the number of nodes that have two

children.

3. There exists a maximum of (2 h – 1) nodes in a binary tree if its height is h.

4. If there exist L leaf nodes in a binary tree, then it has at least L=1 levels.

5. A binary tree of “n” nodes has log(n+1) minimum number of levels or minimum

height.

6. The minimum and the maximum height of a binary tree having “n” nodes

are [log2n] and “n” respectively.

7. A binary tree of “n” nodes has (n+1) null references

Representation of Binary Trees:

A binary tree data structure is represented using two methods. Those methods are

as follows...

1. Array Representation

2. Linked List Representation

Consider the following binary tree..

1. Array Representation of Binary Tree

In array representation of a binary tree, we use one-dimensional array (1-D Array)

to represent a binary tree.

Consider the above example of a binary tree and it is represented as follows...

To represent a binary tree of depth 'n' using array representation, we need one

dimensional array with a maximum size of 2n + 1.

2. Linked List Representation of Binary Tree

We use a double linked list to represent a binary tree. In a double linked list, every

node consists of three fields. First field for storing left child address, second for

storing actual data and third for storing right child address. In this linked list

representation, a node has the following structure...

The above example of the binary tree represented using Linked list

representation is shown as follows...

Binary Tree Traversal:

Traversing a binary tree is the process of visiting each node in the tree

exactly once in a systematic way. Unlike linear data structures in which the

elements are traversed sequentially, tree is a on linear data structure in which the

elements can be traversed in many different ways. There are different algorithms

for tree traversals. These algorithms differ in the order in which the nodes are

visited.

For above binary tree…

Pre-order Traversal :

To traverse a non-empty binary tree in pre-order, the following operations are

performed recursively at each node. The algorithm works by:

1. Visiting the root node,

2. Traversing the left sub-tree, and finally

3. Traversing the right sub-tree.

First , the left sub-tree next, and then the right sub-tree. Pre-order traversal is

also called as depth-first traversal. The word ‘pre’ in the pre-order specifies that

the root node is accessed prior to any other nodes in the left and right sub-trees.

Pre-order traversal algorithms are used to extract a prefix notation from an

expression tree.

Algorithm

PRE ORDER TRAVERSAL:

A, B, D, G, H, L, E, C, F, I, J, and K

In-order Traversal :

To traverse a non-empty binary tree in in-order, the following operations are

performed recursively at each node. The algorithm works by:

1. Traversing the left sub-tree,

2. Visiting the root node, and finally

3. Traversing the right sub-tree.

Algorithm

IN ORDER TRAVERSAL:

G, D, H, L, B, E, A, C, I, F, K, and J

Post-order Traversal :

To traverse a non-empty binary tree in post-order, the following operations are

performed recursively at each node. The algorithm works by:

1.Traversing the left sub-tree,

2.Traversing the right sub-tree, and finally

3.Visiting the root node.

The word ‘post’ in the post-order specifies that the root node is accessed after the

left and the right sub-trees. Post

ALGORITHM

POST ORDER TRAVERSAL:

G, L, H, D, E, B, I, K, J, F, C, and A

Code for BT traversal:

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

struct node

{

 int data;

 struct node *left,*right;

};

typedef struct node node;

node * create();

void preorder(node *);

void inorder(node *);

void postorder(node *);

void main()

{

 clrscr();

 node * root;

 root=create();

 printf("Pre order :");

 preorder(root);

 printf("\nin order :");

 inorder(root);

 printf("\npost order :");

 postorder(root);

}

node* create()

{

 int data;

 node * newnode;

 printf("\nEnter a value (press -1 to stop) : ");

 scanf("%d",&data);

 if(data== -1)

 return NULL;

 newnode=(node*) malloc(sizeof(node));

 newnode->left=newnode->right=NULL;

 newnode->data=data;

 printf("Enter value for left child for %d :",data);

 newnode->left=create();

 printf("Enter value for right child for %d :",data);

 newnode->right=create();

 return newnode;

}

void preorder(node *root)

{

 if(root==NULL)

 return;

 printf("%d ",root->data);

 preorder(root->left);

 preorder(root->right);

}

void postorder(node *root)

{

 if(root==NULL)

 return;

 postorder(root->left);

 postorder(root->right);

 printf("%d ",root->data);

}

void inorder(node *root)

{

 if(root==NULL)

 return;

 inorder(root->left);

 printf("%d ",root->data);

 inorder(root->right);

}

Counting Number of Binary Trees:

We are given a binary tree as input. The goal is to find the number of binary search

trees (BSTs) present as subtrees inside it. A BST is a binary tree with left child less

than root and right child more than the root.

The tree which will be created after inputting the values is given below

Count of the Number of Binary Search Trees present in above Binary Tree are: 2

Operations on a Binary Search Tree:

In a binary search tree, all the nodes in the left sub-tree have a value less

than that of the root node. Correspondingly, all the nodes in the right sub-tree have

a value either equal to or greater than the root node. The same rule is applicable to

every sub-tree in the tree.

The root node is 39. The left sub-tree of the root node consists of nodes 9,

10, 18, 19, 21, 27, 28, 29, and 36. All these nodes have smaller values than the root

node. The right sub-tree of the root node consists of nodes 40, 45, 54, 59, 60, and

65. Recursively, each of the sub-trees also obeys the binary search tree constraint.

Since the nodes in a binary search tree are ordered, the time needed to search an

element in the tree is greatly reduced. Whenever we search for an element, we do

not need to traverse the entire tree. At every node, we get a hint regarding which

sub-tree to search in.

For example, in the given tree, if we have to search for 29, then we know

that we have to scan only the left sub-tree. If the value is present in the tree, it will

only be in the left sub-tree, as 29 is smaller than 39 (the root node’s value).

Binary search trees also speed up the insertion and deletion operations.

OPERATIONS ON BINARY SEARCH TREES:

Inserting a New Node in a Binary Search Tree

The insert function is used to add a new node with a given value at the

correct position in the binary search tree. First find the correct position where the

insertion has to be done and then add the node at that position. In Step 1 of the

algorithm, the insert function checks if the current node of TREE is NULL. If it is

NULL, the algorithm simply adds the node else If the current node’s value is less

than that of the new node, then the right sub-tree is traversed, else the left sub-tree

is traversed. The insert function continues moving down the levels of a binary tree

until it reaches a leaf node.

Deleting a Node from a Binary Search Tree

The delete function deletes a node from the binary search tree.

Case 1: Deleting a Node that has No Children If we have to delete node that has no

child , we can simply remove this node without any issue. This is the simplest case

of deletion.

Case 2: Deleting a Node with One Child .To handle this case, the node’s child is

set as the child of the node’s parent. In other words, replace the node with its child.

Now, if the node is the left child of its parent, the node’s child becomes the left

child of the node’s parent.

Case 3: The node to be deleted has two children.

It is a bit complexed case compare to other two cases. However, the node which is

to be deleted, is replaced with its in-order successor or predecessor recursively

until the node value (to be deleted) is placed on the leaf of the tree. After the

procedure, replace the node with NULL and free the allocated space.

In the following image, the node 50 is to be deleted which is the root node of the

tree. The in-order traversal of the tree given below.

6, 25, 30, 50, 52, 60, 70, 75.

replace 50 with its in-order successor 52. Now, 50 will be moved to the leaf of the

tree, which will simply be deleted.

Algorithm

Delete (TREE, ITEM)

o Step 1: IF TREE = NULL

 Write "item not found in the tree" ELSE IF ITEM < TREE -> DATA

 Delete(TREE->LEFT, ITEM)

 ELSE IF ITEM > TREE -> DATA

 Delete(TREE -> RIGHT, ITEM)

 ELSE IF TREE -> LEFT AND TREE -> RIGHT

 SET TEMP = findLargestNode(TREE -> LEFT)

 SET TREE -> DATA = TEMP -> DATA

 Delete(TREE -> LEFT, TEMP -> DATA)

 ELSE

 SET TEMP = TREE

 IF TREE -> LEFT = NULL AND TREE -> RIGHT = NULL

 SET TREE = NULL

 ELSE IF TREE -> LEFT != NULL

 SET TREE = TREE -> LEFT

 ELSE

 SET TREE = TREE -> RIGHT

 [END OF IF]

 FREE TEMP

[END OF IF]

o Step 2: END

Code for BST traversal and inserting value and deleting value:

#include <stdio.h>

#include <stdlib.h>

struct btnode

{

 int value;

 struct btnode *l;

 struct btnode *r;

}*root = NULL, *temp = NULL, *t2, *t1;

void delete1();

void insert();

void delete();

void inorder(struct btnode *t);

void create();

void search(struct btnode *t);

void preorder(struct btnode *t);

void postorder(struct btnode *t);

void search1(struct btnode *t,int data);

int smallest(struct btnode *t);

int largest(struct btnode *t);

int flag = 1;

void main()

{

 int ch;

 printf("\nOPERATIONS ---");

 printf("\n1 - Insert an element into tree\n");

 printf("2 - Delete an element from the tree\n");

 printf("3 - Inorder Traversal\n");

 printf("4 - Preorder Traversal\n");

 printf("5 - Postorder Traversal\n");

 printf("6 - Exit\n");

 while(1)

 {

 printf("\nEnter your choice : ");

 scanf("%d", &ch);

 switch (ch)

 {

 case 1:

 insert();

 break;

 case 2:

 delete();

 break;

 case 3:

 inorder(root);

 break;

 case 4:

 preorder(root);

 break;

 case 5:

 postorder(root);

 break;

 case 6:

 exit(0);

 default :

 printf("Wrong choice, Please enter correct choice ");

 break;

 }

 }

}

/* To insert a node in the tree */

void insert()

{

 create();

 if (root == NULL)

 root = temp;

 else

 search(root);

}

/* To create a node */

void create()

{

 int data;

 printf("Enter data of node to be inserted : ");

 scanf("%d", &data);

 temp = (struct btnode *)malloc(1*sizeof(struct btnode));

 temp->value = data;

 temp->l = temp->r = NULL;

}

/* Function to search the appropriate position to insert the new node */

void search(struct btnode *t)

{

 if ((temp->value > t->value) && (t->r != NULL)) /* value more than root

node value insert at right */

 search(t->r);

 else if ((temp->value > t->value) && (t->r == NULL))

 t->r = temp;

 else if ((temp->value < t->value) && (t->l != NULL)) /* value less than root

node value insert at left */

 search(t->l);

 else if ((temp->value < t->value) && (t->l == NULL))

 t->l = temp;

}

/* recursive function to perform inorder traversal of tree */

void inorder(struct btnode *t)

{

 if (root == NULL)

 {

 printf("No elements in a tree to display");

 return;

 }

 if (t->l != NULL)

 inorder(t->l);

 printf("%d -> ", t->value);

 if (t->r != NULL)

 inorder(t->r);

}

/* To check for the deleted node */

void delete()

{

 int data;

 if (root == NULL)

 {

 printf("No elements in a tree to delete");

 return;

 }

 printf("Enter the data to be deleted : ");

 scanf("%d", &data);

 t1 = root;

 t2 = root;

 search1(root, data);

}

/* To find the preorder traversal */

void preorder(struct btnode *t)

{

 if (root == NULL)

 {

 printf("No elements in a tree to display");

 return;

 }

 printf("%d -> ", t->value);

 if (t->l != NULL)

 preorder(t->l);

 if (t->r != NULL)

 preorder(t->r);

}

/* To find the postorder traversal */

void postorder(struct btnode *t)

{

 if (root == NULL)

 {

 printf("No elements in a tree to display ");

 return;

 }

 if (t->l != NULL)

 postorder(t->l);

 if (t->r != NULL)

 postorder(t->r);

 printf("%d -> ", t->value);

}

/* Search for the appropriate position to insert the new node */

void search1(struct btnode *t, int data)

{

 if ((data>t->value))

 {

 t1 = t;

 search1(t->r, data);

 }

 else if ((data < t->value))

 {

 t1 = t;

 search1(t->l, data);

 }

 else if ((data==t->value))

 {

 delete1(t);

 }

}

/* To delete a node */

void delete1(struct btnode *t)

{

 int k;

 /* To delete leaf node */

 if ((t->l == NULL) && (t->r == NULL))

 {

 if (t1->l == t)

 {

 t1->l = NULL;

 }

 else

 {

 t1->r = NULL;

 }

 t = NULL;

 free(t);

 return;

 }

 /* To delete node having one left hand child */

 else if ((t->r == NULL))

 {

 if (t1 == t)

 {

 root = t->l;

 t1 = root;

 }

 else if (t1->l == t)

 {

 t1->l = t->l;

 }

 else

 {

 t1->r = t->l;

 }

 t = NULL;

 free(t);

 return;

 }

 /* To delete node having right hand child */

 else if (t->l == NULL)

 {

 if (t1 == t)

 {

 root = t->r;

 t1 = root;

 }

 else if (t1->r == t)

 t1->r = t->r;

 else

 t1->l = t->r;

 t = NULL;

 free(t);

 return;

 }

 /* To delete node having two child */

 else if ((t->l != NULL) && (t->r != NULL))

 {

 t2 = root;

 if (t->r != NULL)

 {

 k = smallest(t->r);

 flag = 1;

 }

 else

 {

 k =largest(t->l);

 flag = 2;

 }

 search1(root, k);

 t->value = k;

 }

}

/* To find the smallest element in the right sub tree */

int smallest(struct btnode *t)

{

 t2 = t;

 if (t->l != NULL)

 {

 t2 = t;

 return(smallest(t->l));

 }

 else

 return (t->value);

}

/* To find the largest element in the left sub tree */

int largest(struct btnode *t)

{

 if (t->r != NULL)

 {

 t2 = t;

 return(largest(t->r));

 }

 else

 return(t->value);

}

Applications of Binary Tree

Unlike Array and Linked List, which are linear data structures, tree is

hierarchical (or non-linear) data structure.

1. One reason to use trees might be because you want to store information that

naturally forms a hierarchy. For example, the file system on a computer:

file system.

2. We can insert/delete keys in moderate time (quicker than Arrays and slower than

Unordered Linked Lists). Self-balancing search trees like AVL and Red-Black

trees guarantee an upper bound of O(Log n) for insertion/deletion.

3. Like Linked Lists and unlike Arrays, Pointer implementation of trees don’t have

an upper limit on number of nodes as nodes are linked using pointers.

Other Applications :

1. Store hierarchical data, like folder structure, organization structure, XML/HTML

data.

2. Binary Search Tree is a tree that allows fast search, insert, delete on a sorted data.

It also allows finding closest item

3. Heap is a tree data structure which is implemented using arrays and used to

implement priority queues.

4. B-Tree and B+ Tree : They are used to implement indexing in databases.

5. Syntax Tree: Used in Compilers.

6. K-D Tree: A space partitioning tree used to organize points in K dimensional

space.

7. Trie : Used to implement dictionaries with prefix lookup.

8. Suffix Tree : For quick pattern searching in a fixed text.

http://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
http://en.wikipedia.org/wiki/AVL_tree
http://en.wikipedia.org/wiki/Red-black_tree
http://en.wikipedia.org/wiki/Red-black_tree
http://www.geeksforgeeks.org/binary-search-tree-set-1-search-and-insertion/
https://www.geeksforgeeks.org/heap-data-structure/
https://www.geeksforgeeks.org/b-tree-set-1-introduction-2/
https://www.geeksforgeeks.org/database-file-indexing-b-tree-introduction/
https://www.geeksforgeeks.org/compiler-design-syntax-directed-translation/
https://www.geeksforgeeks.org/k-dimensional-tree/
http://www.geeksforgeeks.org/trie-insert-and-search/
https://www.geeksforgeeks.org/pattern-searching-set-8-suffix-tree-introduction/

9. Spanning Trees and shortest path trees are used in routers and bridges

respectively in computer networks

10. As a workflow for compositing digital images for visual effects.

UNIT V

Sorting – An Introduction

 Sorting is the process of arranging things in a specific order. It becomes easy

to identify required data if the data is sorted. There are different sorting algorithms

existing each used in a specific situation.

The sorting are classified into two types. Internal sorting and External

sorting. The sorting in which the data is swapped and stored within the reserved

memory are called internal sorting and those that cannot accommodate data within

the reserved memory during sorting are called external sorting.

Bubble Sort :

 In this the heavier data values are moved down and the lighter values move

up as an air bubble in the water, so it is called bubble sort.

In this each element is compared with its next element and the heavier

element moved to later indexes and lighter elements move to previous indexes.

Algorithm:

begin BubbleSort(list)

 for all elements of list

 if list[i] > list[i+1]

 swap(list[i], list[i+1])

end BubbleSort

#include<stdio.h>

#include<conio.h>

https://www.geeksforgeeks.org/applications-of-minimum-spanning-tree/

void bubbleSort(int[],int);

void main()

{

 int a[]={5,12,7,4,1,3};

 int i;

 int n=sizeof(a)/sizeof(int);

 clrscr();

 bubbleSort(a,n);

 for(i=0;i<n;i++)

 printf("%d ",a[i]);

}

void bubbleSort(int a[],int n)

{

 int i,j,t;

 for(i=0;i<n-1;i++)

 for(j=0;j<n-i-1;j++)

 if(a[j]>a[j+1])

 {

 t=a[j];

 a[j]=a[j+1];

 a[j+1]=t;

 }

}

Selection sort:

 In this sorting, each element is selected and that selected element is

compared with every element from its next element till end, and the smallest

element is stored into selected indexed element.

begin selectionSort(list)

 select each element of list

 compare with all elements from next element

 if list[selected index] > list[comparing index]

 swap(list[selected index], list[comparing index])

end SelectionSort

#include<stdio.h>

#include<conio.h>

void selectionSort(int[],int);

void main()

{

 int a[]={5,12,7,4,1,3};

 int i;

 int n=sizeof(a)/sizeof(int);

 clrscr();

 selectionSort(a,n);

 for(i=0;i<n;i++)

 printf("%d ",a[i]);

}

void selectionSort(int a[],int n)

{

 int i,j,t;

 for(i=0;i<n-1;i++)

 for(j=i+1;j<n;j++)

 if(a[i]>a[j])

 {

 t=a[i];

 a[i]=a[j];

 a[j]=t;

 }

}

Insertion Sort :

Insertion sort is a simple sorting algorithm that works similar to the way

you sort playing cards in your hands. The array is virtually split into a sorted and

an unsorted part. Values from the unsorted part are picked and placed at the

correct position in the sorted part.

Algorithm

To sort an array of size n in ascending order:

1: Iterate from arr[1] to arr[n] over the array.

2: Compare the current element (key) to its predecessor.

3: If the key element is smaller than its predecessor, compare it to the elements

before. Move the greater elements one position up to make space for the swapped

element.

// C program for insertion sort

#include <math.h>

#include <stdio.h>

/* Function to sort an array using insertion sort*/

void insertionSort(int arr[], int n)

{

 int i, key, j;

 for (i = 1; i < n; i++)

 {

 key = arr[i];

 j = i - 1;

 /* Move elements of arr[0..i-1], that are

 greater than key, to one position ahead

 of their current position */

 while (j >= 0 && arr[j] > key) {

 arr[j + 1] = arr[j];

 j -- ;

 }

 arr[j + 1] = key;

 }

}

// A utility function to print an array of size n

void printArray(int arr[], int n)

{

 int i;

 for (i = 0; i < n; i++)

 printf("%d ", arr[i]);

 printf("\n");

}

/* Driver program to test insertion sort */

int main()

{

 int arr[] = { 12, 11, 13, 5, 6 };

 int n = sizeof(arr) / sizeof(arr[0]);

 insertionSort(arr, n);

 printArray(arr, n);

 return 0;

}

Quick sort :

Quick sort is a highly efficient sorting algorithm and is based on partitioning

of array of data into smaller arrays. A large array is partitioned into two arrays one

of which holds values smaller than the specified value, say pivot, based on which

the partition is made and another array holds values greater than the pivot value.

Quicksort partitions an array and then calls itself recursively twice to sort the

two resulting subarrays. This algorithm is quite efficient for large-sized data sets as

its average and worst-case complexity are O(n2), respectively.

Quick sort algorithm:

Step 1 − Make the right-most index value pivot

Step 2 − partition the array using pivot value

Step 3 − quicksort left partition recursively

Step 4 − quicksort right partition recursively

Algorithm for partitioning:

Step 1 − Choose the highest index value has pivot

Step 2 − Take two variables to point left and right of the list excluding pivot

Step 3 − left points to the low index

Step 4 − right points to the high

Step 5 − while value at left is less than pivot move right

Step 6 − while value at right is greater than pivot move left

Step 7 − if both step 5 and step 6 does not match swap left and right

Step 8 − if left ≥ right, the point where they met is new pivot

include <stdio.h>

include <conio.h>

// to swap two numbers

void swap(int* a, int* b)

{

 int t = *a;

 *a = *b;

 *b = t;

}

int partition (int arr[], int low, int high)

{

 int pivot = arr[high]; // selecting last element as pivot

 int i = (low - 1); // index of smaller element

 int j;

 for (j = low; j <= high- 1; j++)

 {

 // If the current element is smaller than or equal to pivot

 if (arr[j] <= pivot)

 {

 i++; // increment index of smaller element

 swap(&arr[i], &arr[j]);

 }

 }

 swap(&arr[i + 1], &arr[high]);

 return (i + 1);

}

/*

 a[] is the array, p is starting index, that is 0,

 and r is the last index of array.

*/

void quicksort(int a[], int p, int r)

{

 int q;

 if(p < r)

 {

 q = partition(a, p, r);

 quicksort(a, p, q-1);

 quicksort(a, q+1, r);

 }

}

// function to print the array

void printArray(int a[], int size)

{

 int i;

 for (i=0; i < size; i++)

 printf("%d ", a[i]);

}

void main()

{

 int arr[] = {9, 7, 5, 11, 12, 2, 14, 3, 10, 6};

 int n = sizeof(arr)/sizeof(arr[0]);

 clrscr();

 // call quickSort function

 quicksort(arr, 0, n-1);

 printf("Sorted array: \n");

 printArray(arr, n);

}

Merge Sort :

Like QuickSort, Merge Sort is a Divide and Conquer algorithm. It divides

the input array into two halves, calls itself for the two halves, and then merges the

two sorted halves. The merge() function is used for merging two halves. The

merge(arr, l, m, r) is a key process that assumes that arr[l..m] and arr[m+1..r] are

sorted and merges the two sorted sub-arrays into one. See the following C

implementation for details.

https://www.geeksforgeeks.org/quick-sort/
https://www.geeksforgeeks.org/divide-and-conquer-introduction/

Algorithm for merge sort

MergeSort(arr[], l, r)

If r > l

 1. Find the middle point to divide the array into two halves:

 middle m = l+ (r-l)/2

 2. Call mergeSort for first half:

 Call mergeSort(arr, l, m)

 3. Call mergeSort for second half:

 Call mergeSort(arr, m+1, r)

 4. Merge the two halves sorted in step 2 and 3:

 Call merge(arr, l, m, r)

/* C program for Merge Sort */

#include <stdio.h>

#include <stdlib.h>

// Merges two subarrays of arr[].

// First subarray is arr[l..m]

// Second subarray is arr[m+1..r]

void merge(int arr[], int l, int m, int r)

{

 int i, j, k;

 int n1 = m - l + 1;

 int n2 = r - m;

 /* create temp arrays */

 int L[30], R[30];

 /* Copy data to temp arrays L[] and R[] */

 for (i = 0; i < n1; i++)

 L[i] = arr[l + i];

 for (j = 0; j < n2; j++)

 R[j] = arr[m + 1 + j];

 /* Merge the temp arrays back into arr[l..r]*/

 i = 0; // Initial index of first subarray

 j = 0; // Initial index of second subarray

 k = l; // Initial index of merged subarray

 while (i < n1 && j < n2) {

 if (L[i] <= R[j]) {

 arr[k] = L[i];

 i++;

 }

 else {

 arr[k] = R[j];

 j++;

 }

 k++;

 }

 /* Copy the remaining elements of L[], if there

 are any */

 while (i < n1) {

 arr[k] = L[i];

 i++;

 k++;

 }

 /* Copy the remaining elements of R[], if there

 are any */

 while (j < n2) {

 arr[k] = R[j];

 j++;

 k++;

 }

}

/* l is for left index and r is right index of the

sub-array of arr to be sorted */

void mergeSort(int arr[], int l, int r)

{

 if (l < r) {

 // Same as (l+r)/2, but avoids overflow for

 // large l and h

 int m = l + (r - l) / 2;

 // Sort first and second halves

 mergeSort(arr, l, m);

 mergeSort(arr, m + 1, r);

 merge(arr, l, m, r);

 }

}

/* UTILITY FUNCTIONS */

/* Function to print an array */

void printArray(int A[], int size)

{

 int i;

 for (i = 0; i < size; i++)

 printf("%d ", A[i]);

 printf("\n");

}

/* Driver code */

int main()

{

 int arr[] = { 12, 11, 13, 5, 6, 7 };

 int arr_size = sizeof(arr) / sizeof(arr[0]);

 clrscr();

 printf("Given array is \n");

 printArray(arr, arr_size);

 mergeSort(arr, 0, arr_size - 1);

 printf("\nSorted array is \n");

 printArray(arr, arr_size);

 return 0;

}

Searching

An Introduction

Searching is the process of finding specific element in given list of values.

The searching is said to be either successful of unsuccessful based on whether the

searched item is found or not.

There are 2 ways of searching in given list viz. linear search and binary

search.

Linear or Sequential Search:

 This is the simplest method of searching required data in given list. In this

method, each element in the list is traversed and checked whether it is the required

element or not. The search starts with the first element and goes on sequentially

with next elements till the required element found.

procedure LINEAR_SEARCH (array, key)

 for each item in the array

 if match element == key

 return element's index

 end if

 end for

end procedure

#include <stdio.h>

int LINEAR_SEARCH(int inp_arr[], int size, int val)

{

 int i;

 for (i = 0; i < size; i++)

 if (inp_arr[i] == val)

 return i;

 return -1;

}

int main(void)

{

 int arr[] = { 10, 20, 30, 40, 50, 100, 70,90,80 };

 int key = 100;

 int size = sizeof(arr)/sizeof(arr[0]);

 int res = LINEAR_SEARCH(arr, size, key);

 if (res == -1)

 printf("ELEMENT NOT FOUND!!");

 else

 printf("Item is present at index %d", res);

 return 0;

}

Binary Search

Binary search is the quickest and efficient algorithm for searching in a list.

But the binary search requires the all the elements sorted in the list. In this

searching, the key to be searched is identified and checked whether it falls in left

sub list or right sub list of the middle of list, and further divides that sub list into

further sub lists and search for the key.

Binary Search is a search algorithm that is used to find the position of an

element (target value) in a sorted array. The array should be sorted prior to

applying a binary search. Binary search is also known by these names, logarithmic

search, binary chop, half interval search.

Working

The binary search algorithm works by comparing the element to be searched by the

middle element of the array and based on this comparison follows the required

procedure.

Case 1 − element = middle, the element is found return the index.

Case 2 − element > middle, search for the element in the sub-array starting from

middle+1 index to n.

Case 3 − element < middle, search for element in the sub-array starting from 0

index to middle -1.

ALGORITHM

Parameters inital_value , end_value

Step 1 : Find the middle element of array. using ,

middle = initial_value + end_value / 2 ;

Step 2 : If middle = element, return ‘element found’ and index.

Step 3 : if middle > element, call the function with end_value = middle - 1 .

Step 4 : if middle < element, call the function with start_value = middle + 1 .

Step 5 : exit.

#include <stdio.h>

#include<conio.h>

int iterativeBinarySearch(int array[], int start_index, int end_index, int element)

{

 int middle;

 while (start_index <= end_index)

 {

 // middle = start_index + (end_index - start_index)/2;

 middle=(start_index+end_index) /2;

 if (array[middle] == element)

 return middle;

 if (array[middle] < element)

 start_index = middle + 1;

 else

 end_index = middle - 1;

 }

 return -1;

}

void main(){

 int arr[] = {1, 4, 7, 9, 16, 56, 70};

 int n = sizeof(arr)/sizeof(arr[0]);

 int element = 16;

 int found_index;

 clrscr();

 found_index = iterativeBinarySearch(arr, 0, n-1, element);

 if(found_index == -1)

 printf("Element not found in the array ");

 else

 printf("Element %d found at index : %d",element, found_index);

}

Binary search using recursion

#include <stdio.h>

// A recursive binary search function. It returns

// location of x in given array arr[l..r] is present,

// otherwise -1

int binarySearch(int arr[], int l, int r, int x)

{

 if (r >= l) {

 int mid = l + (r - l) / 2;

 // If the element is present at the middle

 // itself

 if (arr[mid] == x)

 return mid;

 // If element is smaller than mid, then

 // it can only be present in left subarray

 if (arr[mid] > x)

 return binarySearch(arr, l, mid - 1, x);

 // Else the element can only be present

 // in right subarray

 return binarySearch(arr, mid + 1, r, x);

 }

 // We reach here when element is not

 // present in array

 return -1;

}

int main(void)

{

 int arr[] = { 2, 3, 4, 10, 40 };

//if array is not sorted, then sort it first......

 int n = sizeof(arr) / sizeof(arr[0]);

 int x = 10;

 int result = binarySearch(arr, 0, n - 1, x);

 (result == -1) ? printf("Element is not present in array")

 : printf("Element is present at index %d",

 result);

 return 0;

}

Indexed Sequential Search:

In this searching method, first of all, an index file is created, that contains

some specific group or division of required record when the index is obtained,

then the partial indexing takes less time cause it is located in a specified group.

When the user makes a request for specific records it will find that index group

first where that specific record is recorded.

Characteristics of Indexed Sequential Search:

• In Indexed Sequential Search a sorted index is set aside in addition to the array.

• Each element in the index points to a block of elements in the array or another

expanded index.

•

• The index is searched 1st then the array and guides the search in the array.

Note: Indexed Sequential Search actually does the indexing multiple times,

like creating the index of an index.

Though it is faster for searching, but it takes more memory space for maintaining

the index to index. It also can be used only on sorted data.

Graphs

Introduction to Graphs

A Graph is a non-linear data structure consisting of nodes and edges. The nodes are

sometimes also referred to as vertices and the edges are lines or arcs that connect

any two nodes in the graph.

In the above Graph, the set of vertices V = {0,1,2,3,4} and the set of edges E

= {0-1, 1-2, 2-3, 3-4, 0-4, 1-4, 1-3}, and the graph is represented as G{V,E}, where

the V are vertices and the E are edges.

Graphs are used to solve many real-life problems. Graphs are used to

represent networks. The networks may include paths in a city or telephone network

or circuit network. Graphs are also used in social networks like linkedIn, Facebook.

For example, in Face book, each person is represented with a vertex(or node).

Each node is a structure and contains information like person id, name, gender,

locale etc.

Terms Associated with Graphs

Path

A path can be defined as the sequence of nodes that are followed in order to

reach some terminal node V from the initial node U.

Complete Graph

A complete graph is the one in which every node is connected with all other

nodes. A complete graph contain n(n-1)/2 edges where n is the number of nodes in

the graph.

Weighted Graph

In a weighted graph, each edge is assigned with some data such as length or

weight. The weight of an edge e can be given as w(e) which must be a positive (+)

value indicating the cost of traversing the edge.

Digraph

A digraph is a directed graph in which each edge of the graph is associated

with some direction and the traversing can be done only in the specified direction.

Loop

An edge that is pointing to the same vertex from which it is started.

Adjacent Nodes

If two nodes u and v are connected via an edge e, then the nodes u and v are

called as neighbors or adjacent nodes.

Degree of the Node

A degree of a node is the number of edges that are connected with that node. A

node with degree 0 is called as isolated node.

Connected components

Sequential Representation of Graphs

There are two ways to store Graph into the computer's memory. The

sequential representation and linked representation.

In sequential representation, we use adjacency matrix to store the mapping

represented by vertices and edges. In adjacency matrix, the rows and columns are

represented by the graph vertices. A graph having n vertices will have a

dimension n x n.

In the above figure, we can see the mapping among the vertices (A, B, C, D,

E) is represented by using the adjacency matrix and it is representation of

undirected graph.

But a directed graph and its adjacency matrix representation is shown in the

following figure.

Representation of weighted directed graph is different. Instead of filling the

entry by 1, the Non- zero entries of the adjacency matrix are represented by the

weight of respective edges.

The weighted directed graph along with the adjacency matrix representation

is shown in the following figure

** the above adjacency matrices are represented as SPARSE MATRIX.

Linked Representation of Graphs

In the linked representation, an adjacency list is used to store the Graph into

the computer's memory. Consider the undirected graph shown in the following

figure and check the adjacency list representation

An adjacency list is maintained for each node present in the graph which

stores the node value and a pointer to the next adjacent node to the respective node.

If all the adjacent nodes are traversed then store the NULL in the pointer field of

last node of the list. The sum of the lengths of adjacency lists is equal to the twice

of the number of edges present in an undirected graph.

Consider the directed graph shown in the following figure and check the

adjacency list representation of the graph.

In a directed graph, the sum of lengths of all the adjacency lists is equal to

the number of edges present in the graph.

In the case of weighted directed graph, each node contains an extra field that

is called the weight of the node. The adjacency list representation of a directed

graph is shown in the following figure.

Program to demonstrate adjacency list representation of graphs:

#include <stdio.h>

#include <stdlib.h>

// A structure to represent an adjacency list node

struct AdjListNode

{

 int dest;

 struct AdjListNode* next;

};

// A structure to represent an adjacency list

struct AdjList

{

 struct AdjListNode *head;

};

// A structure to represent a graph. A graph

// is an array of adjacency lists.

// Size of array will be V (number of vertices

// in graph)

struct Graph

{

 int V;

 struct AdjList* array;

};

// A utility function to create a new adjacency list node

struct AdjListNode* newAdjListNode(int dest)

{

 struct AdjListNode* newNode =

 (struct AdjListNode*) malloc(sizeof(struct AdjListNode));

 newNode->dest = dest;

 newNode->next = NULL;

 return newNode;

}

// A utility function that creates a graph of V vertices

struct Graph* createGraph(int V)

{

int i;

 struct Graph* graph =

 (struct Graph*) malloc(sizeof(struct Graph));

 graph->V = V;

 // Create an array of adjacency lists. Size of

 // array will be V

 graph->array =

 (struct AdjList*) malloc(V * sizeof(struct AdjList));

 // Initialize each adjacency list as empty by

 // making head as NULL

 for (i = 0; i < V; ++i)

 graph->array[i].head = NULL;

 return graph;

}

// Adds an edge to an undirected graph

void addEdge(struct Graph* graph, int src, int dest)

{

 // Add an edge from src to dest. A new node is

 // added to the adjacency list of src. The node

 // is added at the beginning

 struct AdjListNode* newNode = newAdjListNode(dest);

 newNode->next = graph->array[src].head;

 graph->array[src].head = newNode;

 // Since graph is undirected, add an edge from

 // dest to src also

 newNode = newAdjListNode(src);

 newNode->next = graph->array[dest].head;

 graph->array[dest].head = newNode;

}

// A utility function to print the adjacency list

// representation of graph

void printGraph(srtruct Graph* graph)

{

 int v;

 for (v = 0; v < graph->V; ++v)

 {

 struct AdjListNode* pCrawl = graph->array[v].head;

 printf("\n Adjacency list of vertex %d\n head ", v);

 while (pCrawl)

 {

 printf("-> %d", pCrawl->dest);

 pCrawl = pCrawl->next;

 }

 printf("\n");

 }

}

// Driver program to test above functions

void main()

{

 // create the graph given in above figure

 int V = 5;

 struct Graph* graph = createGraph(V);

 addEdge(graph, 0, 1);

 addEdge(graph, 0, 4);

 addEdge(graph, 1, 2);

 addEdge(graph, 1, 3);

 addEdge(graph, 1, 4);

 addEdge(graph, 2, 3);

 addEdge(graph, 3, 4);

 // print the adjacency list representation of the above graph

 printGraph(graph);

}

Traversal of Graphs :

The graph is one non-linear data structure. That is consists of some nodes and their

connected edges. The edges may be director or undirected. This graph can be

represented as G(V, E). The following graph can be represented as G({A, B, C, D,

E}, {(A, B), (B, D), (D, E), (B, C), (C, A)})

The graph has two types of common traversal algorithms. These are called

the Breadth First Search and Depth First Search.

Depth First Search (DFS)

The Depth-First Search (DFS) is a graph traversal algorithm. In this algorithm, one

starting vertex is given, and when an adjacent vertex is found, it moves to that

adjacent vertex first and tries to traverse in the same manner. It moves through the

whole depth, as much as it can go, after that it backtracks to reach previous vertices

to find the new path. To implement DFS in an iterative way, we need to use the

stack data structure. If we want to do it recursively, external stacks are not needed, it

can be done internal stacks for the recursion calls.

Algorithm

o Step 1: SET STATUS = 1 (ready state) for each node in G

o Step 2: Push the starting node A on the stack and set its STATUS = 2 (waiting state)

o Step 3: Repeat Steps 4 and 5 until STACK is empty

o Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed state)

o Step 5: Push on the stack all the neighbours of N that are in the ready state (whose

STATUS = 1) and set their

STATUS = 2 (waiting state)

[END OF LOOP]

o Step 6: EXIT

Breadth First Search (BFS)

The Breadth First Search (BFS) traversal is an algorithm, which is used to visit all of

the nodes of a given graph. In this traversal algorithm one node is selected and then

all of the adjacent nodes are visited one by one. After completing all of the adjacent

vertices, it moves further to check another vertex and checks its adjacent vertices

again. To implement this algorithm, we need to use the Queue data structure. All the

adjacent vertices are added into the queue when all adjacent vertices are completed,

one item is removed from the queue and start traversing through that vertex again.

Algorithm

o Step 1: SET STATUS = 1 (ready state)

for each node in G

o Step 2: Enqueue the starting node A

and set its STATUS = 2

(waiting state)

o Step 3: Repeat Steps 4 and 5 until

QUEUE is empty

o Step 4: Dequeue a node N. Process it

and set its STATUS = 3

(processed state).

o Step 5: Enqueue all the neighbours of

N that are in the ready state

(whose STATUS = 1) and set

their STATUS = 2

(waiting state)

[END OF LOOP]

Step 6: EXIT

The differences between BFS and DFS are :
BFS DFS

1. BFS stands for Breadth First Search. DFS stands for Depth First

Search.

2. BFS(Breadth First Search) uses Queue data

structure for finding the shortest path.

DFS(Depth First Search) uses

Stack data structure.

3. BFS can be used to find single source

shortest path in an unweighted graph,

because in BFS, we reach a vertex with

In DFS, we might traverse

through more edges to reach a

destination vertex from a

minimum number of edges from a source

vertex.

source.

3. BFS is more suitable for searching vertices

which are closer to the given source.

DFS is more suitable when

there are solutions away from

source.

4. BFS considers all neighbors first and

therefore not suitable for decision making

trees used in games or puzzles.

DFS is more suitable for game

or puzzle problems. We make

a decision, then explore all

paths through this decision.

And if this decision leads to

win situation, we stop.

5. The Time complexity of BFS is O(V + E)

when Adjacency List is used and O(V^2)

when Adjacency Matrix is used, where V

stands for vertices and E stands for edges.

The Time complexity of

DFS is also O(V + E)

when Adjacency List is

used and O(V^2) when

Adjacency Matrix is used,

where V stands for

vertices and E stands for

edges.

Spanning Trees :

 Trees can be defined as special cases of graphs. A tree is a connected graph

that has no cycles.

 In case of a tree there is one root node and all child nodes are traversed from

that root node. But tree representation of a graph has no special root vertex. Each

vertex can be treated as root.

Given an undirected and connected graph G=(V,E), a spanning tree of the

graph G is a tree that spans G (that is, it includes every vertex of G) and is a sub

graph of G (every edge in the tree belongs to G)

The cost of the spanning tree is the sum of the weights of all the edges in the

tree. There can be many spanning trees. Minimum spanning tree is the spanning

tree where the cost is minimum/low among all the spanning trees. There also can

be many minimum spanning trees.

In above example, the thick lines in figure 2 & 3 are the spanning trees. In

which we can identify the cost of each span while traversing and we can choose the

minimum cost span tree.

Minimum spanning tree has direct application in the design of networks. It is

used in algorithms approximating the travelling salesman problem, multi-terminal

minimum cut problem and minimum-cost weighted perfect matching. Other

practical applications are:

1. Cluster Analysis

2. Handwriting recognition

3. Image segmentation

The main advantages of minimal spanning tree is to find shortest path.

Shortest Path :

Application of Graphs:

