
UNIT 1

Introduction to Programming :

Program is defined as set of instructions. We programmers give instructions to

system to fulfill the requirement of users, is called programming. We use computer

languages to give instructions to computer (for programming). The computer

languages are classified into two types.

Low level languages

High level languages

The languages that are capable of accessing processor features directly are called

low level languages. w.r.t. systems, it is said that system understands low level

languages.

But low level languages have a problem that a program designed in LLL for a

specific modal processor cannot be executed on other modal processors because of

change in features. This is called hardware dependency.

To overcome this problem, high level languages are developed. But HLL cannot

access processor features directly, (w.r.t. system it is said system doesn’t

understand HLL). So they cannot be executed directly. For execution the code

written in HLL must be converted into LL code/ machine code using compilers or

interpreters.

Compilers, interpreters are software mechanisms used to convert HL code into

PROCESSOR APPROPRIATE LL code.

The compilers convert HL code into LL code at once and stores as a file on hard

disk. The interpreters convert HL code into LL code line after line and pass into

processor for execution. They won’t create a file. When compared compilers are

faster than interpreters.

The languages C, C++, Java etc are provided with two phases of conversion of HL

code into LL code to provide SECURITY TO HL CODE. The C has two compilers

and the java has one compiler and one interpreter.

Runtime Environment:

Every SW has its own environment, and the environment of programming

languages is called RUNTIME ENVIRONMENT. (In short called RE). The RE of

languages include no. of components using which we give instructions to system

and under control of this RE the programs executes. The RE components are also

called TOKENS of that language.

Introduction to Object Oriented Programming, Objects and Classes

All high level languages support user defined functions. The user defined

functions are used to increase modularity in the program. When we develop a

project, it might include thousands of lines of code. As it becomes difficult of

typing entire program in one function, all high level languages support dividing

programs into functions.

General scope of variables in programming while using functions is such

that, we can declare variables either globally or locally.

The variables declared with in a function definition are called local variables to

that function and they are accessible only within that function. The variables

declared outside of all functions are called global variables and they are accessible

to all the functions from the location of their declaration.

But as global variables are accessible in all the functions, there is a chance of

misuse of them, which leads to data corruption. So it is suggested to programmers

to reduce usage of global variables. In this case, we will be using only local

variables, but local variables are not accessible in other functions. They have their

SCOPE only within that function in which they are declared. So functions provide

a facility of passing values from one function into another through () as arguments

from function call into function definition. But as there is a facility of passing

arguments there is a chance of passing wrong argument, which leads to data

corruption.

To provide SECURITY to data, a new technique of programming is

designed called OOPS (Object Oriented Programming System). In this

programming system, the variables and functions are clubbed into one entity called

object and when a function is called for an object, the function automatically

processes the variables with which it is clubbed with. And there is no requirement

of passing as arguments.

In this scenario, as there is no requirement of passing arguments, there is no chance

of passing wrong argument. Thus the OOPS provide data security.

In structured programming and previous generation of languages, the concentration

was only on functions. But in OOPS, the concentration is more focused on data

and also on methods.

Moreover, the objects in the program are treated as practical live objects. We

can understand and manipulate them as a real world object. We can treat and

interact with them as real world entity. So this approach of programming will have

more simple, practical.

To work with OOP languages, one should have knowledge of two things.

1. Class

2. Object

Class is an ADT (Abstract Data Type). Simply, it is a user defined data type. It is

used to group the variables and functions that are required for an object. It is like a

template of object or a blue print of object.

Object is a named instance of class. It is like a variable of a primitive data type.

When we create an object to a class all the features of the class are abstracted to the

object. We can make use of the features declared in class through object with a “.”

DOT operator called PERIOD operator.

Java is dynamic, i.e. each object in java must be allocated with memory with the

keyword “new”. When we declare a reference for class, it cannot be used directly

without instantiation (created with instance i.e. allocated with memory). When the

reference is instantiated, then it becomes object.

Q. give an introduction to oops, classes and objects

Characteristics of OOPS :

OOPS :

To work with OOP languages, one should have knowledge of two things.

1. Class

2. Object

Class is an ADT (Abstract Data Type). Simply, it is a user defined data type.

It is used to group the variables and functions that are required for an object. It is

like a template of object or a blue print of object.

Object is a named instance of class. It is like a variable of a primitive data

type. When we create an object to a class all the features of the class are abstracted

to the object. We can make use of the features declared in class through object with

a “.” DOT operator called PERIOD operator.

A language to be an OOP, should have some standards and are called oops

concepts. They are:

Abstraction : Abstracting features of class into object in different ways.

Encapsulation: Selective hiding of class members in object

Polymorphism : One thing in many forms

Inheritance: Getting features of a class into another.

Different benefits of oops achieved by these concepts are better memory

management, high data security, easy identification of methods that process data,

reusability of code etc.

By the above benefits, it becomes easy of managing large projects with OOPS.

And in OOP approach, as we treat the objects as real world entities, it becomes

easy in understanding them and interacting with them.

Questions that can be framed:

Q. What are basic concepts of OOPS ?

Q. What are the characteristics of OOPS?

Difference between OOP and Procedure Oriented Programming:
Procedural Programming can be defined as a programming model which is

derived from structured programming, based upon the concept of calling

procedure. Procedures, also known as routines, subroutines or functions,

simply consist of a series of computational steps to be carried out. During a

program’s execution, any given procedure might be called at any point,

including by other procedures or itself.

Object oriented programming can be defined as a programming model which is

based upon the concept of objects. Objects contain data in the form of

attributes and code in the form of methods. In object oriented programming,

https://www.geeksforgeeks.org/introduction-of-programming-paradigms/
https://www.geeksforgeeks.org/basic-concepts-of-object-oriented-programming-using-c/

computer programs are designed using the concept of objects that interact with

real world. Object oriented programming languages are various but the most

popular ones are class-based, meaning that objects are instances of classes,

which also determine their types.

Procedural Oriented Programming Object Oriented Programming

In procedural programming, program is
divided into small parts
called functions.

In object oriented programming,
program is divided into small parts
called objects.

Procedural programming follows top
down approach.

Object oriented programming
follows bottom up approach.

There is no access specifier in
procedural programming.

Object oriented programming have
access specifiers like private,
public, protected etc.

Adding new data and function is not
easy.

Adding new data and function is
easy.

Procedural programming does not
have any proper way for hiding data so
it is less secure.

Object oriented programming
provides data hiding so it is more
secure.

In procedural programming,
overloading is not possible.

Overloading is possible in object
oriented programming.

In procedural programming, function is
more important than data.

In object oriented programming,
data is more important than
function.

Procedural programming is based
on unreal world.

Object oriented programming is
based on real world.

Q. write differences between procedure oriented languages and oops.

Introduction to Java Programming
Introduction :

Java language is developed by a team under leadership of James Goslings at SUN

Micro Systems (Stanford University Networks). It was actually developed as

electronic programming language and called OAK. It was used in set-top boxes,

remotes etc. it was released during mid of 1991. Later it is reconstructed for

systems and released in the year 1995 with name “java”. In French, “JAVA”

means “multi-purpose”. The java is a general purpose programming language and

also it is constructed as a platform (mini operating system).

The general purpose programming edition is called J2SE (Java 2 Standard Edition)

and the other platforms released are J2ME (mobile edition) and J2EE (Enterprise

Edition).

The Java has become more popular because of its features. Its features are

generally referred as java BUZZ words.

Object Oriented − In Java, everything is an Object. Java can be easily extended since it is
based on the Object model.

Platform Independent – the java program when compiled, it generates byte code. The byte
code generated on any OS can be executed on any OS. Because of this byte code the java
programs are WORA (Write Once Run Anywhere) OR compile once run anywhere or
platform independent.

Simple – As Java syntaxes and semantics are similar to C, C++ etc languages, it is simple
to learn and write programs.

Secure − With Java's secure feature it enables to develop virus-free, tamper-free systems.
It is managed by the Byte Code Verifier of the JVM.

Portable – as java is platform independent and as the byte code can be interpreted on any
platform, it is portable to any system.

Robust – it means healthy. Because of the exception handling mechanism provided by the
Java Debugger of JVM, the java programs are healthy and strong.

Multithreaded − With Java's multithreaded feature it is possible to write programs that can
perform many tasks simultaneously.

Distributed − Java as it is platform independent it can be distributed to any system on the
internet.

Dynamic − Java is considered to be more dynamic than C or C++, as it has the best
memory management systems.

Questions that can be framed :

Q. give a brief introduction to java
Q. write about java features
Q. write about java buzz words

Comparision of java with other languages:

Java is one of the most popular and widely used programming language and
platform. A platform is an environment that helps to develop and run programs
written in any programming language.
Java is fast, reliable and secure. From desktop to web applications, scientific
supercomputers to gaming consoles, cell phones to the Internet, Java is used
in every nook and corner.

Here we are comparing 3 other languages (Python, C++ and C) with Java.

PYTHON
• Python is a high-level language. It fully supports object-oriented

programming. Python is not a pure object-oriented language.
• Python is an interpreted language whereas Java is not an interpreted

language, it is a compiled language.
• Python is a scripting language whereas JAVA is a low-level implementation

language.
• Python is easy to use whereas JAVA is not as simple as Python.

Programmers prefer to use python instead of Java because python contains
less line of code whereas Java is just opposite to it.

• Python programs are much shorter than JAVA programs.
• Many large organizations like Google, Yahoo, NASA, etc. are making use of

Python. But Python programs are generally expected to run slower than
Java programs.

• Java has much better library support for some use cases than Python which
is the biggest advantage of JAVA.

• Python is very much slower than Java.
C++
• Java was basically derived from C++.
• C++ is both procedural and object-oriented programming language whereas

Java is a pure object-oriented language.
• Both the languages have different objectives, i.e. their purpose of use are

different.
• The main objective of C++ is to design a system of programming.
• Java doesn’t support operator overloading but C++ does support it.

• C++ also extends the C programming language whereas Java is basically
created to support network computing.

• Java is much slower than C++ in terms of execution.
• In Java, there is an automatic garbage collection whereas this is not the

case in C++. In C++ all objects are destroyed manually with the help of the
code.

• C++ supports pointers which are variables which store addresses of other
variables. But Java does not have any kind of variable which stores
addresses of other variables.

• C++ executes its programs very fast compared to Java.

C
• C is very much like C++(which was used to derive Java). In fact, C++ is an

updated form of C.
• C is a structure or procedure-oriented language whereas Java is an object-

oriented programming language.
• Execution time for programs written in C is very less when compared to

Java.
• C supports pointers whereas Java does not support variables for storing

addresses of other variables.
• C cannot handle exceptions in its program whereas Java is very good at

handling exceptions

Questions that can be framed:

Q. Give comparisons between java and other languages

Applications and Applets:

Java Application:
Java Application is just like a Java program that runs on an
underlying operating system with the support of a virtual machine. It is also
known as an application program. The graphical user interface is not
necessary to execute the java applications, it can be run with or without it.
Java Applet:
An applet is a Java program that can be embedded into a web page. It runs
inside the web browser and works at client side. An applet is embedded in
an HTML page using the APPLET or OBJECT tag and hosted on a web
server. Applets are used to make the web site more dynamic and entertaining.

https://www.geeksforgeeks.org/operating-systems/
https://www.geeksforgeeks.org/jvm-works-jvm-architecture/
https://www.geeksforgeeks.org/what-is-the-difference-between-gui-and-cui/
https://www.geeksforgeeks.org/java-applet-basics/
https://www.geeksforgeeks.org/difference-between-static-and-dynamic-web-pages/
https://www.geeksforgeeks.org/difference-between-web-browser-and-web-server/
https://www.geeksforgeeks.org/html-basics/

Java Development Kit:

JDK is an acronym for Java Development Kit. The Java Development Kit (JDK) is a

software development environment which is used to develop java applications and

applets. It contains JRE + development tools.

When the java was released by SUN micro systems, the software was named J2SDK (Java

2 Standard Development Kit). But later it is called JDK, and the JDK is available in

different editions for different purposes.

o Standard Edition (general edition for system programming)

o Enterprise Edition (for enterprise web application)

o Micro Edition (for mobile programming)

The JDK when installed, it installs an API and a JVM.

The java API is divided into packages and sub packages that need to be imported to each program
to make use of its classes.

The JVM is Java Virtual Machine. The JVM acts as a mini operating system.

When we install java into system, we must install the JDK the Java Development

Kit. It also installs a public JRE that plugs into the browsers for running java

applets. The JDK is designed for each operating system separately.

When we install the JDK into system, the JRE is installed and it includes two

components viz., API and JVM. The JVMs are designed separately for each OS

and kept within the JDK software. The JVM designed for windows would not

work on UNIX or other operating systems. So we must download appropriate JDK

and install into system.

The “javac” (java compiler) converts high level code into byte code that is JVM

dependent. And the JVM further converts the BYTE code into Operating System’s

native code. Thus the JVM makes java PLATFORM INDEPENDENT.

The JVM is a software mechanism that includes many layers like byte code

verifier, java debugger, interpreter and a compiler called Just In Time compiler.

Byte Code Verifier:

The java compiler when creates byte code file, it places a signature at beginning of

the byte code file, called magic number. The byte code verifier of the JVM checks

for this magic number and if it exists, then only it allows the byte code to enter into

JVM for further process. Thus, the byte code verifier providing a firewall

mechanism to provide security to system. Because of this the java is SECURED.

Java Debugger:

The java debugger is the next layer of JVM that checks for logical bugs in the

program with the help of a software mechanism called exception handling. This

JDB checks for unhandled exceptions OR runtime exceptions. Because of this, the

java programs become ROBUST.

Interpreter: as the java applet programs are placed on a web server and executed

on client and as the clients can have any operating system, the JVM has an

interpreter to convert the byte code into required operating system’s matching code

called native code where ever , when ever required.

JIT compiler: many a times, the interpreter works slow when compared to

compiler, so the JVM is integrated with a compiler called “Just In Time” compiler,

that runs by default. It can be switched off, to convert byte code into native code

with interpreter.

Thus the JVM converts the byte code into native code for execution by providing

security and making java programs robust and platform independent.

Questions that can be framed :

Q. write about JDK

Q. what are the different components installed when JDK is installed

Q. write about the JVM

Java Source file structure, Prerequisites for Compiling and Running Java Programs:

Java is pure oops, so everything is placed within a class, including main()

definition. No global code is allowed in java. The general structure of java program

is similar to a C or C++ program.

> Documentation Section

> Package Statement

> Import Statements

> Class Definition

The document section specifies what the program does and why it is useful. It is

optional part. It is placed in comments.

The package statement is used to place our classes in user defined packages.

The import statement is used import required package into program

The interfaces are design by contract. And it is optional part.

The class definition includes the actual code of program. It may have no. of classes

required to fulfill the requirement of users. Generally we place main() defined in a

separate class that acts as controller, by declaring objects of other classes in main().

Ex:

/*

This is document section

This is the first java program

*/

//package statement (optional)

//import statement (optional to this program)

class Test1{

public static void main(String []a){

System.out.println(“hello java world”);

}

}

Once program is written, it is saved as a file. The java naming convention is that

we save the program with a name that of the class name. i.e. the file name and the

class name are same.

The program is compiled at command prompt with the command “javac”.

Syntax: javac <file_name>.java

The “javac” activates java compiler that converts high level code into intermediate

code and saves with extension “ .class” called BYTE code. The javac generates

number of byte code files each for a class in the program.

The program is executed by activating JVM with command “java” at command

prompt.

Syntax : java <ClassName>

** if file name and class name are same, the we give same name to “javac” and

“java”. If different then we must pay concentration on file name and class name.

**we must set PATH for “javac” command with OS to make use of it.

The java when installed, it gets installed into “C:\Program Files \Java\jdk_x.y\bin”

 copy this path and then… get onto my computer -> properties -> advanced TAB -

> click on Environment Variables -> select PATH in system variables-> click on

EDIT button, and in “value” field place a ; at end and paste the above copied path

and click on all OK buttons.

Questions that can be framed:

Explain program structure of simple java program.

Explain how to implement / run a java program.

Q. What are the pre-requisites for running a java program?

More Complex Programs,

UNIT II

Java Language Fundamentals:

The building Blocks of Java: every language has its own set of components

defined in runtime environment, using which we develop programs, called building

blocks of the language.

The different JRE components or building blocks or LEXICAL tokens of java are:

Comments:

The Java language has three styles of comments:

// text

All characters from // to the end of the line are ignored.

/* text */

All characters from /* to */ are ignored.

/** text */

These comments are treated specially when they occur immediately before any

declaration. They should not be used any other place in the code. These comments

indicate that the enclosed text should be included in automatically generated

documentation as a description of the declared item.

Identifiers : are names used for identification of components like variables, methods,

classes, objects etc. the java has some naming rules for identifiers :

- Identifier must start with alphabet

- They may have numbers in between or at end

- Keywords are not supposed to be used

- Duplicate names not permitted

- Digits, underscore, currency symbols are allowed

- Java is case sensitive, so identifiers are also case sensitive

- The built in package / class names should not be used as identifiers.

Keywords: every language has its own set of important words reserved for a specific

purpose called keywords. The java has 49 keywords.

Ex: int , char, float etc

Literals: Literal is a value, that is processed in the program. The java supports

different types of literals like, integer literals, floating point literals, Boolean literals,

character literals, string literals.

The integer literals are of 3 types:

decimal values (base 10) .. the general numbers what we use. Ex: 15

octal values (base 8) we use 0-7 numbers and the value is prefixed with a ZERO

ex: System.out.println(051) : will display 41

hexa-decimal values (base 16) we use 0 – 9 and then A-F , i.e.0-F all sixteen digits

are used to represent a value in hexa decimal format. This value is prefixed with 0X

to the value.

ex: System.out.println(0x64) : will display 100

Floating point literals: are fractional parts and can be represented as floats or doubles.

The JREs default data type for floating points is double. To represent a value as float,

we must suffix the letter f or F to the value to represent it as float data type value.

Character literals : are prefixed with a forward slash (generally called escape

sequences)

\\ : display back slash

\” : display “

\r :return carriage (takes cursor to beginning of line)

\b : back space

\n : new line …

Etc

String literals : String is group of characters. It si represented within “ “

Ex : “hello”

Boolean literals : unlike in C and C++, where the Boolean values are represented

with pulse / no pulse (zero or non-zero) , the java has keywords true / false to

represent Boolean literals.

Q. write about java building blocks.

Data types: The data types are used to provide proper treatment to data. The java supports both

primitive data types and non-primitive data types (user defined).

The different primitive data types supported by java are byte, char, short, int, long, float,

double and boolean.

 byte: it occupies 1 byte memory in RAM and stores ASCII code of key pressed. It is

equivalent to char data type of C.

 char: it occupies 2 byte memory in RAM and stores and manages data in Unicode format.

(this is not like char data type of C and C++)

 short, int and long: these three are used to store and manage integer data. Where the short

occupies 2 bytes, int occupies 4 bytes and long occupies 8 bytes in RAM. Though long occupies

8 bytes, it stores only whole numbers only.

float: it occupies 8 bytes memory used to store real numbers. i.e. fractional part also.

When we specify a float value in java, the value must be suffixed with a letter F/f to the value.

As JRE’s default data type for real numbers is double, when we write float x=1.5; it raises error,

as 1.5 by default is treated as double. So we must write float x=1.5F; or float x=1.5f;

double: it occupies 16 bytes memory. Used to store real numbers.

boolean: In C and C++ the booleans are managed with PULSE or NO-PULSE i.e. with

ZERO or ONE, but the java works with booleans with keywords true / false directly. In java, we

cannot use 0/1 in logics, we must use the keywords true/false. Ex : boolean b=true;

Variable declaration:

A variable is a named space reserved in main memory, used to store data given input by user.

These are used for manipulation of data.

 The variables can be declared with in a method definition or in a class or as a static

variable in a class.

 The variables declared with in a method definition are called local variables to that

method and they have SCOPE only within that method. They are not accessible in other methods

of the class. The local variables of a method cannot be static. And we must initialize them

explicitly.

 The variables declared with in a class are accessible to all the methods of that class and

called instance variables. The instance variables hold the values for each instance of the class.

The instance variables have their scope to all the methods of that class.

 The static variables are allocated with memory once and shared by all objects. They have

common copy in memory. The static variables cannot be declared with in a method. They can be

declared only in a class. These will have their scope even if the object is not created.

The variables can be declared to any above data type as it is done in C or C++.

Syntax: data_type variable_name;

Ex: int a;

 boolean b; etc.

The variables can be assigned with values either at the time of declaration or after

declaration.

Ex: int a;

 a=5;

or

 int a=;

Q Write about data type of java

Q. write about primitive data types

Q. write about variable declarations in java

Wrapper classes:

When we take input of data from user, we declare variables of primitive data types and

store data into them to do process on them. As java is pure oops, many a times we need to treat

data as objects.

To treat data as objects, the java.lang package has number of classes each for a primitive

data type, called wrapper classes.

The data type byte has a class Byte, char – Character, short-Short, int- Integer, long –

Long, float – Float , double – Double and the boolean has class Boolean.

For example, if we write int a=5; now the data value 5 is treated as a simple data value.

But if we write Integer x= new Integer(5), the same 5 is treated as an object.

The java.util package has number of utility classes for easy manipulation of data. all the

utility classes called collections store and manage data as objects. So the simple data value is to

be converted into objects and stored into these collection classes.

The simple data value when converted into objects, it is called boxing and when the same

value is converted from object into a simple data type value, it is called un-boxing.

 In older versions of java, the boxing – un-boxing was done explicitly. But the

current versions of java, the auto-boxing is done. i.e. the boxing is done automatically.

 When we store a simple data value 5 into a collection framework class, it is

automatically converted into its corresponding wrapper class object. The un-boxing is still to be

done explicitly.

The wrapper classes also have many static methods for data conversions from one data

type into another and also from numeric into String and vice-versa.

The methods parseTYPE() where the TYPE is replaced with appropriate data type

converts String data into numeric and the toString() converts numeric into String.

Questions that can be framed:

➔ Write about wrapper classes.

➔ What are the wrapper classes and why they are used

➔ What is boxing / un-boxing

Operators and Assignment:

 Operators are used to do process on data. The operators are classified in different ways

based on no. of operands (on which operation is performed) they take like unary operators,

binary operators and ternary operators.

 The operators that take one operand are called unary operators. The operators that

take two operands are called binary operators. They are further classified into different types

based on their purpose.

➔ Arithmetic Operators : the operators that are used to perform basic arithmetic operations

are called arithmetic operators. They are :

+, -, *, / and %

As the division results two values, the quotient is retrieved with / operator and the

reminder with % symbol called modulus.

** the modulus can be used only with int data type.

➔ Relational Operators: these are also called comparison operators. These are used to

develop conditions and return true or false, called Boolean values named after the

mathematician called George Bool. They are :

>, >=, <, <=, ==, !=

The == is called equality operator and the != is not equals to.

➔ Logical Operators: these are used to combine two conditions. These are:

&&, || and !

The && is logical AND operator, || is logical OR and the ! is NOT. The && results false

even if one is false and the || results true even if one is true. The ! operator turns true into

false and vice-versa.

➔ Assignment operator: this operator assigns RHS to LHS, so LHS must be a variable. It is

‘=’.

All arithmetic operators in combination with assignment operator performs dual

operations like a=a+2; can be written as a+=2; we can use +=, -=, *=, /= and %=.

➔ Increment decrement operators: these are actually unary operators. They are ++ ,- - and -.

The – negates the value.

The ++ increases value by 1 and

the - - decreases value by 1.

These can be used either as pre-process increment/decrement or post process

increment/decrement.

➔ Conditional operator : the languages C, C++ and java supports an operator

‘ ? : ’ called conditional operator and it is a ternary operator. i.e. it takes three operands.

Syntax:

 Condition ? statement1 : statement2;

If the condition results true, statement1 is executed by skipping statement2 and vice-

versa.

 For simpler divisions of program into two parts, we prefer using a conditional

operator instead of if-else branching as branching gives compiler overhead (burden on

system/RE).

➔ Bitwise Operators: these perform operations on binary digits of the data. These can be

used with integer or byte data types in java.

& - Binary AND

| - Binary OR

^ - Binary XOR (exclusive OR)

~ - Binary complement operator

<< - Binary left shift

>> - Binary right shift

➔ Special Operators: Java has some special operators like,

. (DOT) : this is called PERIOD operator. It is member access operator in java. The

members of object are accessed through object using this period operator. Ex :

obj.feature.

instanceof : this operator is used to check whether the object is of given class type or not.

This operator returns true or false.

new: this operator is used to allocated memory for each instance dynamically.

Questions that can be framed:

Write about different operators in java.

Control structures:

 The control structures are used for controlled execution of code. The different control

structures in java are : branching using if-else and switch case, and iteration using loops.

 The if-else can be used in different ways:

➔ Simple if : the if is a keyword that accepts a condition/Boolean expression for decision

making and executes the influenced statement if the condition results true. The else part

is optional part. We can use only simple if without else.

syntax : if(condition)

 Statement ;

➔ If-else statement : we can also have an else part placed with if keyword. The statement

under else part executes if the Boolean expression placed with “if” results false.

Syntax: if(condition)

 Statement;

 else

 Statement;

If we need to place more than one statement under influence of any part, then we

should group them using braces.

➔ Nesting if-else statement: placing of if or else with in another if or else is called nested if-

else statement. If we need a condition to be checked based on the other if condition then

we can place if within if, and it is called nested if statement.

➔ If-else-if ladder: When we need to divide program into more than two parts and execute

only one among them, then we use the if-else-if ladder.

if(condition)

 Statement;

else if (condition)

 statement;

else

 statement;

Iteration :

The loops are used for iteration. Iteration is repeated execution of process. The loops are

controlled with a Boolean expression. If the Boolean expression results true, the loops continue

its execution and otherwise stops.

 Based on placement of the condition, the loops are classified into two types. i) entry

controlled loops, ii) exit controlled loops. The loops that have Boolean expression at end of loop

body are called entry controlled loops and that have at end of loop body are called exit controlled

loops.

While statement:

 Syntax :

 Initialization;

 While(boolen expression)

 {

 Statements;

 Counter;

 }

Do-while : When we use the do-while, the loop body is executed at least once even if the

Boolean expression results false.

Syntax :

 Initialization;

 do{

 statements;

 counter;

 }while(Boolean expression) ;

for statement:

 the for is entry controlled loop and it takes the Boolean expression at beginning of loop

body.

Syntax :

 Initialization;

 for(; Boolean expression;)

 {

 Statements;

 Counter;

}

As in for loop, the program control comes to the location that is before first ; we can

logically shift initialization to that location and as every time the program control comes to the

location that is after second ; we can logically shift the counter to that location, thus forming

logical syntax of for as follows:

 for(initialization ; condition ; counter)

 Statement;

For - each loop:

The for in java takes another form also. It is generally used with arrays etc.

for (type var : array) {

 code to be executed

}

Ex:

int arr[]={12,23,44,56,78};

for(int i:arr){

 System.out.println(i);

 }

Switch statement:

 For decision making, the java supports switch-case statement also. The switch keyword

takes a variable and there can be no. of cases grouped with in braces under a switch.

 The switch checks for EQUALITY of the variable against multiple values. The block

under switch executes completely from matching case till end of block. So for controlling, we

may place a “break” keyword after statements under each case.

 The switch-case in C,C++ work with ASCII code. So a switch can have maximum 256

cases in C and C++. But in java, the switch works with byte, short, int, long data types and from

the version of java 7, it works with String objects also. In java’s switch-case we can use

WRAPPER classes also.

Syntax :

Switch(var)

{

 case 1: statements;

 break;

 case 2: statements;

 break;

 ……………..

 ……………..

 case n: statements;

 break;

 Default : statements;

}

Q. write about control structures in java (don’t write about switch-case)

Q. write about controlling constructs (don’t write about switch-case)

OR they may ask only branching or only switch case or only iteration for 5

marks

Arrays:

Array is arranged things. The things are arranged for easy and faster manipulation. The

array is collection of similar type of elements that has contiguous memory location.

 The array is indexed collection of elements. Where the first element is indexed

with ZERO and the last element is indexed with its size-1.

The “[]” are used to declare and manipulate arrays. The [] are used to specify “number

of elements in array / size of array” while declaring, and the same [] are used to specify index

number of each element.

 The java arrays are dynamic and treated as objects in java. When an array is declared in

java, it is allocated with an extra integer variable memory called “length” that stores the size of

array and can be used with a DOT operator with array name.

In java array declaration can be done in following ways:

Data_type [] arr_name; ([] near data type)

Data_type []arr_name; ([] near array name)

Data_type arr_name[]; ([] after aray name)

 While declaring the array the size is not specified. The size of array is specified while

allocating memory with new operator.

Ex: int [] a=new int[5];

In java the arrays can have primitive data type values and also objects as well.

The arrays can be initialized while declaring by specifying the values with in { } directly

without specifying array size, as below:

int a[]={10,20,30,40};

int a[]=new int[]{10,20,30,40,50};

int a[]=new int[5]{10,20,30,40,50}; this code raises error.

Ex:

int a[]=new int[]{10,20,30,40,50};

for(int i=0;i<a.length;i++)

 System.out.println(a[i]);

In java, the “for–each” loop can be used for traversing the across array. The first in for-

each is a variable of data type of array and the second is array /collection name, where each

value in the array is copied into the variable and the variable is manipulated while iterating. But

as we cannot traverse in reverse in for-each loop, it is fewer used.

Ex:

 int arr[]={12,13,14,44};

 int total=0;

 for(int i:arr)

 total=total+i;

 System.out.println("Total: "+total);

We can also pass an array as argument to methods :

class Testarray2{

//creating a method which receives an array as a parameter

static void min(int arr[]){

int min=arr[0];

for(int i=1;i<arr.length;i++)

 if(min>arr[i])

 min=arr[i];

System.out.println(min);

}

public static void main(String args[]){

int a[]={33,3,4,5};//declaring and initializing an array

min(a);//passing array to method

}}

The disadvantage with arrays is that, we can store only fixed size of elements in

array. Its size is not increased during runtime of program.

Questions that can be framed:

➔ White about single dimensional arrays of java

➔ How to create and manipulate arrays

Two dimensional arrays:

 In many programming languages, the arrays support managing data by providing more

than one index referring, called multi dimensional arrays. In practical life, the two dimensional

arrays are used much.

A 2D array can be declared in following ways:

Data_type[][] arr;

Data_type [][]arr;

Data_type arr[][];

Data_type []arr[];

Ex:

 int arr[][]=new int[3][3]; though the memory is allocated contiguously, we can logically

feel this as a 3 row and 3 column array.

We can initialize a multi dimensional array by passing values as groups within { }.

int arr[][]=new int[][]{ {1,2,3,4},{10,20,30,40},{100,200,300,400}};

it can be manipulated as below:

for(int i=0; i < arr.length ; i++)

{

 for(int j=0; j < arr[i].length ; j++)

 System.out.print(arr[i][j]);

System.out.println();

}

Jagged arrays : the java supports jagged arrays while working with multi-dimensional arrays.

The JAGGED ARRAY can hve different number of columns in each row.

Ex:

 int arr [][] =new int[5] []; // the 2nd dimension is not specified here.

arr[0]=new int[5];

arr[1]=new int[8];

arr[2]=new int[3];

arr[3]=new int[7];

arr[4]=new int[4];

it can be used when we need to store different number of columns for each row.

Questions that can be framed:

➔ write about 2 D arrays in java

➔ write about multi dimensional arrays

➔ write about jagged arrays in java

Strings: In programming languages the sequence of characters is called a String. In C and C++,

the char data type arrays are used to store and manage strings. In java, the java.lang package has

classes String, StringBuffer and StringBuilder to store and manage string data.

 The String objects are managed in a special memory location called STRING POOL

within the memory. The string pool would not store duplicate values within itself. When the

same value is stored in multiple string objects, the data is stored in string pool once and all String

references point to the same data in string pool, thus providing better memory management.

When multiple string objects point to same data, if data modified through object then the

data of other objects also get modified and it leads to data corruption. So the String objects are

designed as IMMUTABLE (NOT MODIFIABLE with in itself).

 The StringBuffer, StringBuilder classes are mutable (modifiable with in itself) as their

data is not managed with in string pool.

 In java, when a string literal is represented within “ ” , it is treated as an instance of String

class. So we can initialize the String object either with a new operator or simply assigning string

literal to the reference directly.

Ex:

 String s=new String(“HELLO”);

 String s=”HELLO”;

The string class has number of constructors that take byte[], char[], string constant, string

object etc to construct the string object.

The different methods of String class are :

➔ Concat() : this method concatenates a given string without modifying data within the

object, returns data as a new String object.

Ex: String s= “sri ”;

 System.out.println(s);//displays –sri

s.concat(“gnanambica”);

 System.out.println(s);//still displays –sri

As the concat() has not modified data within the object s. As these methods return string

after doing process, we can store it into another object.

String s1=s.concat(“gnanambica”);

 System.out.println(s+” “+s1);//display –sri sri gnanambica

If we need to modify data within itself, then as must store data back into same object as….

 s=s.concat(“gnanambica”);

➔ equals() : returns a Boolean value by checking equality of strings

➔ equalsIgnoreCase():returns a Boolean value by checking equality of strings by ignoring

its case

➔ toLowercase() : converts string into lower case letters and returns as new string

➔ toUppercase() : converts string into upper case letters and returns as new string

➔ trim() : removes trailing blank spaces

➔ split(char) : splits string into String[] at the char specified.

➔ charAt(int index) : returns the character at given string

➔ startsWith() / endsWith() : for strings searching

➔ compareTo() : for lexicographic comparison of strings

* The String class is overloaded with operator + for string concatenation

String Buffer Class:

Java StringBuffer class is used to create mutable (modifiable) String objects. The

StringBuffer class in Java is the same as String class except it is mutable i.e. it can be

changed with in itself.

class StringBufferExample{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Shri ");

sb.append("Gnanambica");//now original string is changed

System.out.println(sb);//prints ShriGnanambica

} }

The String class can be assigned with value directly as String s=”HELLO”; as the

string literal is treated as String class instance. But in case of StringBuffer objects, it

it not like so. We must explicitly allocate memory with new.

 StringBuffer sb=new StringBuffer(“Hello”);

Questions :

➔ write about strings in java

➔ how strings are managed with in string pool

➔ Write about differences between String and StringBuffer classes

Java as an OOP Language

Defining classes:

Class, Objects and Methods:

Defining a class: A class is a basic building block in OOPS, to which the objects are created. A

class is defined with the keyword ‘class’. It is used to group the data members called fields and

methods. The class describes the behavior of the object.

Syntax :

class <ClassName> {

 Fields declaration

 Method definitions

}

Field declaration:

 The instance variables or class variables are declared with in the class directly. These are

initialized with ZERO by default. We can also declare variables as local variables in the

methods. These must be initialized explicitly. These fields can be of primitive types or can also

be objects of other classes.

Ex: int x;

Methods declaration:

 The method is collection of statements that are grouped together to perform an operation.

The methods are declared in class and can be called with object. The signature of the method

includes access specifier, access modifiers, return type of the method, method name and formal

arguments.

The access specifier can be private, protected, public or default. We can have only one access

specifier

Access modifiers can be static, abstract, final, synchronized etc. we can have multiple access

modifiers to a method.

Ex: public static void main(String a[]){}

Creating object: as the java is dynamic we instantiate each object with “new” operator and assign

that instance to a reference.

Syntax: ClassName reference=new ClassName();

Ex: Emp e=new Emp();

 Now all the features of the class are abstracted into object and they can be accessed with

the object with a DOT operator called PERIOD.

 In general, the data members are declared as private and the methods are declared as

public. We call the method for an object and the method does process on the data of that object.

Constructor : constructor is a special method of the class that has same name of the class name

and will be invoked automatically whenever the class is instantiated, i.e. allocated with memory

with new operator.

Each class may have either one constructor or multiple constructors with arguments.

As these methods (constructors) are used to construct memory for the member references

declared in a class, these are called constructors. And these can also be used for initializing the

values of data members,

Though the constructors are methods, but not used for general process like normal methods, the

constructors cannot return any value and these have no return type

We may call one constructor with in another of the same class by passing arguments to this().

And we can call base constructor with in derived constructor by passing arguments to super().

Questions that can be framed:

How class features are declared and how to access them?

How to define a class and access its features?

What are the features declared in a class and how to use them?

Modifiers: the private, protected, public keywords used for encapsulation are called access

specifiers and the java has access modifiers like abstract, final, static , volatile, native,

synchronized.

abstract : used to develop abstract classes and abstract methods.

An abstract method is one that has no definition.e. has no implementation and it is used to make

sure the derived class provides its implementation.

Abstract class is one that cannot be instantiated generally and used as base in inheritance. The

abstract classes tell what to do and the derived classes provide their implementations by

overriding the abstract methods of abstract classes.

Abstract classes can have abstract methods and also non-abstract methods. But if a class has

atleast one abstract method then the class must be abstract class.

static : any feature, either a variable or a method declared as static within a class is allocated

with memory even if object is not created for that class. So the java provides a facility of using

them with class name also.

 The static variables or methods are generally called class features and the non-static

features are called instance features.

When a class has static variables / objects declared, they are generally initialized in a

static block instead of constructor.

final : in C and C++, the keyword “const” is used for declaring constant variables. In java, the

keyword “final” is used for declaring constants.

The fial keyword can be used with variables, methods and also witjh classes.

The final variable can not be modified with its values

The final methods can not be overridden in derived classes

The final classes can not be used in inheritance as base classes.

volatile : the variables that need to change their values frequently for number of times during

running of program can be declared with keyword “volatile”. It is something like register

variables of C.

synchronized : used in multi threading programming

native : when the code is written in C or C++ languages and that code need to be used in a java

program, then we use the keyword “native” to specify that the code is from external resource and

need to be executed in native environment.

Q :

Write about different access modifiers?

Packages:

 When java is installed into system, there will be two components installed into system

viz., JVM and Java API. The JVM is java virtual machine and the API is Application

Programming Interface, simply java library.

 The java API includes no. of pre-defined classes, grouped based on their purpose and

placed into folders called packages.

A package in Java is used to group related classes. We use packages to avoid name

conflicts, and to write a better maintainable code. Packages are divided into two categories.

➔ Built-in Packages

➔ User-defined Packages (create your own packages)

The main package in API is called “java” and it has no. of sub packages, where each

package has no. of classes related for a specific purpose. These packages must be linked to our

program (as the libraries are linked in C with #include) with the keyword import.

Syntax of import :

import package_name.Class_Name; imports specific class into our program.

Ex: import java.util.Scanner; imports Scanner class of util package into our p[rogram.

import Package_name.*; imports all classes in that package

Ex: import java.util.*; imports all classes of util package into our program.

There are many system defined packages like:

lang: this package has classes to handle basic features of java LANGuage.

util: has general utilities like Scanner, Vector, ArrayList, Arrays, Stack, LinkedList etc classes.

Sql: this package has classes for database connectivity.

applet: for applet programming

io: has classes for managing input / output streams etc

to make use of the classes, we must import the corresponding package into our program.

User defined packages: we can also create our packages and organize our classes into them. To

create a user defined package, we must place a “package” statement in first line of the program.

Ex: package mypack;

When we need to place a class into a package, then the program must have a package

statement, the class must be declared as public class, and we must compile that class by using the

option –d with javac command, specifying where to place the .class file.

Ex:

package mypack;

public class MyClass{

 public int add(int a, int b);

}

While compiling this class we must use the option –d with javac command.

Syntax: javac –d <path> FileName.java

Here the <path> specifies where to place generated class files/ where to create the package.

Ex: javac –d c:\ MyClass.java

 For using this class, we must import the package into program and make use of the class.

import mypack.MyClass;

class MyAddition{

 public static void main(String a[]){

 MyClass m=new MyClass();

 System.out.println(m.add(5,6));

 }

}

We use the option –classpath with javac command while compiling this class.

Syntax : javac –classpath <path> FileName.java

Here path specifies where to file class files / package

Ex:

Javac –classpath c:\ MyAddition.java

While running this program, we use the option –cp with java command specifying the location of

both class files, i.e class of the package and also current folder. Where the current folder is

specified with a “.” (DOT).

Syntax : java –cp <paths> ClassName

Ex: java –cp .; c:\ MyAddition

Once a package is created, we can add any number of classes to it. But all the classes

must be public and saved with classname.

If a class placed within a package is not public, then that class cannot be used outside of

the package and they are called hidden classes.

Q :

 Write about packages in java

 Write about user defined packages and its uses

Interfaces:

An interface in java is like a pure abstract class. The interface is defined like a class but with

keyword “interface” instead of “class”.

 The interface methods are by default abstract. So the interfaces cannot have non-abstract

methods. The interface variables are by default static and final. So the values assigned to them

are not modifiable.

 These are concrete by design. These provide information of what to be done in derived

classes. The derived classes will have implementation specifying how it is to be done.

The interface will have method declarations only. These cannot have definitions /

processes to be done. The implementing sub class of interface will have to provide the definition

/ how the process is to be implemented.

Syntax:

interface <interface_name> {

 variables;

 method declarations;

}

ex:

interface abc{

 int x=10;

 public void disp();

}

In above example the variable x declared with in the interface abc is static and final. It

can be accessed with interface name like abc.x and its value can not be modified.

The method disp() doesn’t have definition. It is abstract by default. It tells what to be

done in derived class. If a class implements the above interface “abc”, then that class must

override the method disp() and provide the definition in that class specifying how the process is

to be done.

The interfaces can not be instantiated as these are abstract. These can be used as bases in

inheritance. The interfaces can be used in inheritance with the keyword “implements” instead of

extends.

Ex:

class xyz implements abc{

}

Now the class class xyz provides implementation for all the methods declared with in interface

abc.

 In java an interface can “extends” other interface. But a class implements the interface.

The interface variables can be accessed either with its derived class object or with interface name

as these are static and final.

Java supports implementing multiple interfaces, thus providing multiple inheritance

concept fulfilled with interfaces.

Ex:

class abc implements I1, I2{

}

Where both I1 and I2 are interfaces and now the class abc must override all the methods of both

I1 and I2 interfaces.

Questions that can be framed:

➔ What are interfaces and how to use them?

➔ How to implement multiple inheritance in java

➔ Write about interfaces in java

➔ What are interfaces and how to access their features?

Unit III

Exception Handling

Introduction:

ERRORS :

There are three types of errors in java

1.Compile-time errors

2.Run time errors

3.logical errors

COMPILE TIME ERRORS:

These are errors which prevents the code from compiling because of error in the syntax such as

missing a semicolon at the end of a statement or due to missing braces, class not found, etc.

These errors will be detected by java compiler and displays the error onto the screen while

compiling.

Ex:

 System.out.println(“ HELLO WORLD); // ” missing etc

RUN TIME ERROR:

These errors are errors which occur when the program is running. Run time errors are not

detected by the java compiler. It is the JVM which detects it while the program is running.

Ex:

 int a[]=new int[5];

System.out.println(a[5]); //the 4 is the last index. It is expressed as an exception by the JVM.

LOGICAL ERRORS:

These errors are due to the mistakes made by the programmer. It will not be detected by a

compiler nor by the JVM. Errors may be due to wrong idea or concept used by a programmer

while coding or by giving wrong data given input by user.

Ex:

 int a,b,c;

 a=sc.nextInt();

 b=sc.nextInt();

 c=a/b; //here if the user gives input of 0 as b value, then the JRE could not execute code

and raises error by throwing an exception

questions that can be framed:

Write about errors in java

What are the types of errors in java

Basics of Exception Handling in Java:

The logical errors and runtime errors when raised in program, the JRE could not execute the

code and terminates abruptly the function in which it could not executed code, and this case is

said that the JRE has thrown an Exception.

 The java provides a software mechanism called Exception Handling to let the

programmer to control program execution, such that it won’t terminate abruptly.

 The exception handling is supported with keywords try-catch-finally, throw and throws.

Ex:

 try{

 int x=Integer.parseInt(sc.nextLine());

 int y=Integer.parseInt(sc.nextLine());

 int z=x/y;

 System.out.println(z);

 } catch(ArithmeticException ae){

 System.out.println(“don’t enter zeros”);

 }Catch(NumberFormtException ne){

 System.out.println(“enter only numbers”);

 }

The finally is default block that executes in all the cases. Generally, the closing of streams,

database connections etc is one with in finally block.

Exception Hierarchy:

All the classes used for exception handling are derived from the class Exception which is derived

from class Throwable.

Constructors and Methods in Throwable class:

Constructor Summary

Throwable ()

 Constructs a new throwable with null as its detail message.

Throwable (String message)

 Constructs a new throwable with the specified detail message.

Throwable (String message, Throwable cause)

 Constructs a new throwable with the specified detail message and cause.

Throwable (Throwable cause)

 Constructs a new throwable with the specified cause and a detail message of (cause==null

? null : cause.toString()) (which typically contains the class and detail message of cause).

 Throwable fillInStackTrace ()

 Fills in the execution stack trace.

 Throwable getCause ()

 Returns the cause of this throwable or null if the cause is nonexistent

or unknown.

 String getLocalizedMessage ()

 Creates a localized description of this throwable.

 String getMessage ()

 Returns the detail message string of this throwable.

StackTraceElement

[]

getStackTrace ()

 Provides programmatic access to the stack trace information printed

by printStackTrace() .

 Throwable initCause (Throwable cause)

 Initializes the cause of this throwable to the specified value.

 void printStackTrace ()

 Prints this throwable and its backtrace to the standard error stream.

 void printStackTrace (PrintStream s)

 Prints this throwable and its backtrace to the specified print stream.

 void printStackTrace (PrintWriter s)

 Prints this throwable and its backtrace to the specified print writer.

 void setStackTrace (StackTraceElement [] stackTrace)

 Sets the stack trace elements that will be returned

by getStackTrace() and printed by printStackTrace() and related methods.

 String toString ()

 Returns a short description of this throwable.

https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#Throwable()
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#Throwable(java.lang.String)
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/String.html
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#Throwable(java.lang.String,%20java.lang.Throwable)
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/String.html
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#Throwable(java.lang.Throwable)
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#fillInStackTrace()
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#getCause()
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/String.html
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#getLocalizedMessage()
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/String.html
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#getMessage()
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#getStackTrace()
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#printStackTrace()
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#initCause(java.lang.Throwable)
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#printStackTrace()
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#printStackTrace(java.io.PrintStream)
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/io/PrintStream.html
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#printStackTrace(java.io.PrintWriter)
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/io/PrintWriter.html
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#setStackTrace(java.lang.StackTraceElement[])
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#getStackTrace()
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#printStackTrace()
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/String.html
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/Throwable.html#toString()

Q . write Throwable class

Write about constructors and methods of Throwable class

Explain basic exception handling in java with its corresponding classes

Unchecked and Checked Exceptions:

Checked exceptions: The code in java that has hardware interactivity or interactivity of other

runtime environments always must be handled to achieve more perfection (Robustness). To

make sure programmer to use appropriate handler, these exceptions are declared as checked /

compile time exceptions. Unless these are handled, the code will not be compiled.

Runtime Exceptions: the exceptions that are thrown by JRE during running of program, based on

data given input buy user or the logic implemented in program are called runtime exceptions.

 The java can handle more than 600 types of pre-defined exceptions and all these are

derived from java.lang.Exception class.

The different pre-defined exceptions are:

Compile time exceptions / checked exceptions:-

IOException : when any IO operation is performed

FileNotFoundException: when file processing code is written

SQLException: when database connectivity established

InterruptedException: when the sleep() of thread class is used

ClassNotFoundException: when a class is loaded into memory by program for further use etc

situations

Runtime exceptions / unchecked exceptions

ArrayIndexOutOfBoundsException :when we mention the index >= length of array

StringIndexOutOfBoundsException : when we use the index >= length() of String

ArithmeticException :when division is done with ZERO

NumberFormatException : when a non-numeric value is tried to be parsed

NullPointerException : when a class reference is used prior its instantiation (allocation of

memory)

Questions that can be framed:

What are the types of exceptions and how to handle them

Write about checked / unchecked exceptions

Write about compile time / runtime exceptions

Handling Exceptions in Java:

try-catch-finally : this block is used to handle the code, such that when an exception is thrown,

the JRE customizes the process to be done with out terminating abruptly.

Syntax :

 try{

 code expected to throw exception

 }

 catch(TYPEException e){

Code that need to be executed when exception is

thrown and handled

 }

 finally{

 default block

 }

 Here the TYPEException in catch() is replaced with appropriate exception type.

We place the code that is expected to throw exception in try block. A try must have at least one

catch() or finally. But a try can have any number of catches, each handling a specific type of

exception.

We place the code that is expected to throw exception in try block. A try must have at least one

catch() or finally. But a try can have any number of catches, each handling a specific type of

exception.

Ex:

 try{

 int x=Integer.parseInt(sc.nextLine());

 int y=Integer.parseInt(sc.nextLine());

 int z=x/y;

 System.out.println(z);

 } catch(ArithmeticException ae){

 System.out.println(“don’t enter zeros”);

 }Catch(NumberFormtException ne){

 System.out.println(“enter only numbers”);

 }

The finally is default block that executes in all the cases. Generally, the closing of streams,

database connections etc is one with in finally block.

Exception and Inheritance: the important thing one should remember while handling exceptions

is that, while handling exceptions first child exceptions are to be handled and then the parent

exceptions.

 If parent exception is handled first, then because of the dynamic binding concept, as the

parent reference can hold child instances, the catch with parent exception itself handles the child

exceptions, which leads to raise error that the child exception is already handled.

 So we must handle child exception first and then parent exceptions

Q. explain how the exceptions are handled in java

Explain about exception handling in java

Explain try-catch-finally blocks in exception handling

Throwing User-defined Exceptions:

The “throw” is a keyword, used to throw an exception explicitly. The “throw” can throw a pre-

defined exception or any derived class from Exception including user defined exceptions.

Ex:

 throw new ArithmeticException();

the throw must be placed within a try block to handle it.

User defined exceptions :

We can also develop our own exceptions by extending the java.lang.Exception class.

Ex:

UnderAgeException.java

public class UnderAgeException extends Exception{

 public UnderAgeException(){

 super(“you are under 18. Not eligible for voting”);

 }

}

public class Voting{

 public static void main(String args[]){

 Scanner sc=new Scanner(System.in);

 int age=sc.nextInt();

 if(age<18)

 try{

 throw new UnderAgeException();

 }catch(UnderAgeException e){

 System.out.println(e);

 }

 else

 System.out.println(“Eligible for voting”);

 }

}

The keyword “throw” is used to throw an exception explicitly. As the user defined exception is

derived from Exception class, it has become throwable and can be caught like a normal pre-

defined exception/

The message that must be displayed is passed as argument to Exception class constructor by

calling super(), and as the toString() of Exception class returns the message as string, the

Exception object can be displayed directly as System.out.println(e).

Questions that can be framed:

Write about user defined exceptions

Explain user defined exceptions with example

Explain how to throw a user defined exception

Redirecting and Re throwing Exceptions:

The “throws” is a keyword used along with method signature to specify that the method throws a

specific exception and the programmer must provide proper handler. i.e. it is used to specify that

the programmer must handle that exception with catch(), unless which the code will not be

compiled.

Ex:

abc.java

class abc{

 public int divideData(int x, int y) throws ArithmeticException{ //line 2

 return x/y;

 }

}

bca.java

class bca {

 public static void main(String args[]){

 abc a=new abc();

 try{

 System.out.println(a.add(5,0)); //line 5

 }catch(ArithmeticException e){

 System.out.println(e);

 }

 }

}

If the line at line 5 is not placed under try block, then the program will not be compiled.

Thus, the “throws” at “line 2” makes sure when the add() is called, it must be tried and caught.

If the programmer doesn’t have anything to do in catch(), then he may declare that the

calling method also “throws” the exception, without handling.

Ex:

bca.java

class bca {

 public static void main(String args[]) throws ArithmeticException{

 abc a=new abc();

 System.out.println(a.add(5,0));

 }

}

Q. what is redirecting exception

What is use of throws keyword

Advantages of Exception – Handling Mechanism:

The when exception is thrown by code in a method, it can be handled either with a try-catch

block or leave it by declaring the method as it throws specific exception.

When the method is declared with “throws”, the exception is not handled. For handling the code

must be tried and caught. In general the programmer displays corresponding messages to user, so

that the input can be given correctly into program.

But if the exception is thrown NOT by the data given input and it is because of a logical error in

code, then the root cause must be identified to repair / modify the code.

For example, if “ArrayIndexOutOfBoundsException” is thrown in a location, the root cause is

not in that location, it is at the location where the array is declared. To identify the root cause, so

that the program can be debugged easily, we can print the stack of the exception throws and trace

out the location and make correction to the code. It is done by the method printStackrace() of the

Exception class.

Ex;

 try{

 Some code

 }catch(Exception e){

 e.printStackTrace();

 }

This displays the messages of the stack that stored the root cause of current exception, by which

programmer can easily debug it.

Questions that can be framed:

Write about debugging with exception handling.

How the exception handling can be used for debugging of program,

What are the advantages of exception handling

Multithreading

An Overview of Threads :

Thread is process. When the process needs to be divided into sub processes and executed

under control of programmer, that process can be made as a thread. Generally the process

management is done by operating system. When process is developed as thread, the thread

control is managed by programmers. As the threads won’t give burden on operating system, they

are called light weight components.

The thread has three properties, viz. a thread name, priority and thread group name.

When we develop multiple threads, we can group them based on their purpose for easy

manipulation. The threads can also be given with names to be identified uniquely in all the parts

of the program. The thread priority specifies how much time the thread is to occupy the

processor within given time. The priority never indicates sequence of execution of thread.

The java.lang package has a class Thread and an interface Runnable to develop threads.

We can either extends Thread class or implement Runnable to develop a Thread. When the

Thread is extended or Runnable is implemented, the method public void run() must be

overridden, that includes the process to be executed as a thread. The run() is called explicitly by

making a call to start() of Thread class. It can be blocked either by making a call to wait() or

sleep().

Q. give an overview of threads

Explain briefly about threads

Creating Threads: a Thread can be created from Thread class or by implementing

Runnable interface

class MyThread extends Thread{

 public void run(){

 }

}

Or

class MyThread implements Runnable{

 public void run(){

 }

}

The process that need to be executed as thread must be placed as definition of the

run() method. i.e. we must override the run() method when we implement Runnable

or extends Thread class.

Thread class:

Constructors:

 Thread()

 Thread(Thread instance)

 Thread(String name)

Methods:

currentThread() : this is a static method that returns the current thread instance.

sleep() : suspends program execution for specified number of milliseconds.

setName(String) : gives a name to the thread

setPriority(int) : used to change priority of thread

run() : used to perform the action/process of the thread

start() : starts execution of thread, when start() called, the JVM calls run()

isAlive() : returns true, if the thread is alive

Exceptions in thread management:

when the sleep() / wait() is called the JRE “InterruptedException” , when a wrong

argument (parameter value) is passed to any method of thread class then the

“IllegalArgumentException” is thrown, and when working with multiple threads, and

the threads reach a dead-lock situation, then “IllegalMonitorStateException” is

thrown.

Ex:

class MT1 implements Runnable{

 Thread t;

 MT1()

 {

 t=new Thread(this);

 }

 public void run()

 {

 System.out.println("in MT1 :");

 for(int i=0;i<5;i++)

 System.out.print("hi ");

 }

}

class MT2

{

 public static void main(String a[]) throws Exception

 {

 System.out.println("started main thread :"+Thread.currentThread());

 MT1 m=new MT1();

 m.t.start();

 Thread.sleep(1000);

 System.out.println("\nMT1 is completed");

 System.out.println("Main is completed");

 }

}

Output :

D:\bca>java MT2

started main thread :Thread[main,5,main]

in MT1 :

hi hi hi hi hi

MT1 is completed

Main is completed

** if the main thread is not suspended with its execution with sleep(), then the main() thread

completes its execution and then the user defined thread. Which leads to incorrect execution.

Q explain how to create threads

Explain the ways of creating threads

Explain thread execution with an example

Thread Life–cycle:

In Java, a thread always exists in any one of the following states. These states are:

1. New

2. Active

3. Blocked / Waiting

4. Timed Waiting

5. Terminated

New: Whenever a new thread is created, it is always in the new state. For a thread in the new

state, the code has not been run yet and thus has not begun its execution.

Active: When a thread invokes the start() method, it moves from the new state to the active state.

The active state contains two states within it: one is runnable, and the other is running.

o Runnable: A thread, that is ready to run is then moved to the runnable state. In the

runnable state, the thread may be running or may be ready to run at any given instant of

time. It is the duty of the thread scheduler to provide the thread time to run, i.e., moving

the thread the running state.

A program implementing multithreading acquires a fixed slice of time to each individual

thread. Each and every thread runs for a short span of time and when that allocated time

slice is over, the thread voluntarily gives up the CPU to the other thread, so that the other

threads can also run for their slice of time. Whenever such a scenario occurs, all those

threads that are willing to run, waiting for their turn to run, lie in the runnable state. In the

runnable state, there is a queue where the threads lie.

o Running: When the thread gets the CPU, it moves from the runnable to the running state.

Generally, the most common change in the state of a thread is from runnable to running

and again back to runnable.

Blocked or Waiting: Whenever a thread is inactive for a span of time (not permanently) then,

either the thread is in the blocked state or is in the waiting state.

Timed Waiting: Sometimes, waiting for leads to starvation. For example, a thread (its name is A)

has entered the critical section of a code and is not willing to leave that critical section. In such a

scenario, another thread (its name is B) has to wait forever, which leads to starvation. To avoid

such scenario, a timed waiting state is given to thread B. Thus, thread lies in the waiting state for

a specific span of time, and not forever. A real example of timed waiting is when we invoke the

sleep() method on a specific thread. The sleep() method puts the thread in the timed wait state.

After the time runs out, the thread wakes up and start its execution from when it has left earlier.

Terminated: A thread reaches the termination state because of the following reasons:

o When a thread has finished its job, then it exists or terminates normally.

o Abnormal termination: It occurs when some unusual events such as an unhandled

exception or segmentation fault.

A terminated thread means the thread is no more in the system. In other words, the thread is

dead, and there is no way one can respawn (active after kill) the dead thread.

Q. Explain thread life cycle.

Thread Priorities and Thread Scheduling:

Priority of a Thread (Thread Priority)

Each thread has a priority. Priorities are represented by a number between 1 and 10. In most

cases, the thread scheduler schedules the threads according to their priority (known as

preemptive scheduling). But it is not guaranteed because it depends on JVM specification that

which scheduling it chooses. Note that not only JVM a Java programmer can also assign the

priorities of a thread explicitly in a Java program.

Setter & Getter Method of Thread Priority

Let's discuss the setter and getter method of the thread priority.

public final int getPriority(): The java.lang.Thread.getPriority() method returns the priority of the

given thread.

public final void setPriority(int newPriority): The java.lang.Thread.setPriority() method updates

or assign the priority of the thread to newPriority. The method throws IllegalArgumentException

if the value newPriority goes out of the range, which is 1 (minimum) to 10 (maximum).

The job of an operating system's thread scheduler is to determine which

thread runs next. One simple implementation of the thread scheduler keeps the

highest-priority thread running at all times and, if there is more than one highest-

priority thread, ensures that all such threads execute for a quantum each in round-

robin fashion

This means that A gets a quantum of time to run. Then B gets a quantum. Then A

gets another quantum. Then B gets another quantum. This continues until one thread

completes. The processor then devotes all its power to the thread that remains (unless

another thread of that priority becomes ready). Next, thread C runs to completion

(assuming that no higher-priority threads arrive). Threads D, E and F each execute for

a quantum in round-robin fashion until they all complete execution (again assuming

that no higher-priority threads arrive). This process continues until all threads run to

completion.

Q. explain about thread priority and scheduling

Thread Synchronization:

 When working with multiple threads, we don’t prefer controlling threads with sleep() to

let other threads to occupy the processor.

 In this case, if one thread has not completed its execution and still occupying processor,

and if other thread has completed its sleep time and tries to occupy the processor, then the

processor won’t respond to any of the threads and it gets hang and the JRE throws

IllegalMonitorStateException. This case is called ‘DEADLOCK’.

 To overcome this problem of deadlock, we control threads with the methods wait() and

notify() of Object class, instead of sleep() of Thread class.

 But the methods called under multiple threads must be declared as ‘synchronized’, unless

which they misbehave (execute wrongly)

Synchronization: when multiple threads try to occupy processor, i.e. when multiple threads try to

do process on one shared resource, then the process goes uncontrolled. In this case, we declare

the methods that are to be called by threads as synchronized, such that only one thread access the

resource at a time and the other thread is in blocked state, and when the first thread goes to

blocked state, the other uses the resource.

 We can either declare the methods with “synchronized” keyword, or we can write a

synchronized block in current versions of java.

Q. explain synchronization

What is thread synchronization

Daemon Threads:

Daemon thread in Java is a low-priority thread that runs in the background to perform tasks

such as garbage collection. Daemon thread in Java is also a service provider thread that

provides services to the user thread. Its life depends on the mercy of user threads i.e. when all

the user threads die, JVM terminates this thread automatically.

In simple words, we can say that it provides services to user threads for background supporting

tasks. It has no role in life other than to serve user threads.

Example of Daemon Thread in Java: Garbage collection in Java (gc), finalizer, etc.

Properties of Java Daemon Thread

• They can not prevent the JVM from exiting when all the user threads finish their execution.

• JVM terminates itself when all user threads finish their execution.

• If JVM finds a running daemon thread, it terminates the thread and, after that, shutdown it.

JVM does not care whether the Daemon thread is running or not.

• It is an utmost low priority thread.

Default Nature of Daemon Thread

By default, the main thread is always non-daemon but for all the remaining threads, daemon

nature will be inherited from parent to child. That is, if the parent is Daemon, the child is also a

Daemon and if the parent is a non-daemon, then the child is also a non-daemon.

In general, the main() method of the program is daemon thread.

Q. what is a daemon thread

Thread groups:

Java provides a convenient way to group multiple threads in a single object. In such a

way, we can suspend, resume or interrupt a group of threads by a single method call.

Java thread group is implemented by java.lang.ThreadGroup class.

A ThreadGroup represents a set of threads. A thread group can also include the other thread

group. The thread group creates a tree in which every thread group except the initial thread group

has a parent.

A thread is allowed to access information about its own thread group, but it cannot access the

information about its thread group's parent thread group or any other thread groups.

Communication of Threads:

Inter-thread communication or Co-operation is all about allowing synchronized threads to

communicate with each other.

Cooperation (Inter-thread communication) is a mechanism in which a thread is paused running in

its critical section and another thread is allowed to enter (or lock) in the same critical section to

be executed.It is implemented by following methods of Object class:

o wait()

o notify()

o notifyAll()

1) wait() method

The wait() method causes current thread to release the lock and wait until either another thread

invokes the notify() method or the notifyAll() method for this object, or a specified amount of

time has elapsed.

The current thread must own this object's monitor, so it must be called from the synchronized

method only otherwise it will throw exception.

2) notify() method

The notify() method wakes up a single thread that is waiting on this object's monitor. If any

threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary

and occurs at the discretion of the implementation.

3) notifyAll() method

Wakes up all threads that are waiting on this object's monitor.

Difference between wait and sleep?

Let's see the important differences between wait and sleep methods.

wait() sleep()

The wait() method releases the lock. The sleep() method doesn't release the lock.

It is a method of Object class It is a method of Thread class

It is the non-static method It is the static method

It should be notified by notify() or

notifyAll() methods

After the specified amount of time, sleep is

completed.

Q explain thread groups and inter thread commiunication

UNIT-IV

Files and I/O Streams:

Stream is data flow. In case of C language, the input / output are referred

with the terms standard input and standard output. The same are called input

stream and output stream in OOPS.

 In java, we can read / write data from/ to a file / array / console / socket.

The java.io package has number of classes for managing data streams. The java

streams are classified into two types.

➔ Byte streams

➔ Char streams

Byte streams: these are also called Low Level Streams. These streams read / write

data in ASCII format, i.e. they read 1 byte and write 1 byte data at a time. The

classes used for low level streaming are identified with a suffix InputStream,

OutputStream in their names. These are used to write and read data from binary

files. Generally the IO operations that have hardware interactivity are managed

with byte streams.

Ex: FileInputStream , FileOutputStream, ByteArrayInputStream,

ByteArrayOutPutStream, PrintStream etc.

Char streams: These are called High Level Streams. These streams read / write

data in Unicode format, i.e. these read 2 bytes and write 2 bytes at a time. The

classes that are used for high level streaming of data are identified with suffix

Reader / Writer in their names. These are used to read and write data from text

files. Generally the IO operations that do not have hardware interactivity are

managed with char streams.

Ex: FileReader, FileWriter, BufferedReader, PrintWriter etc.

 For Reading data from hard disk, either FileInputStream or FileReader are

preferred. The FileInputStream reads 1 byte at a time and FileReader reads 2 bytes

at a time. But if the file is a binary file, then FileInputStream must be preferred.

 All the input streaming classes are derived from the class InputStream and

all data writing classes are derived from the class OutputStream.

The InputStream and OutputStream classes are abstract classes, so they can not be

instantiated directly or they can not be used directly by creating objects of them.

These provide what to be for reading and writing. All streaming classes are derived

from these two and they provide how the data is to be read or write as per their

specification.

 For example the InputStream class has methods….

 read() :- reads a single char /key stroke from key board and returns its ASCII

value as an integer.

 read(byte[]) : reads data into the given byte array

 close() : used to close the stream.

 available() : returns no. of bytes to be read.

All byte streams override these methods to read data 1 byte at a time. And all char

streams override these methods to read 2 byte data at a time.

Similarly, the OutputStream class has methods…..

 write(int): int specifying a char is written

 write(byte[]): writes given byte array

All byte streams override these methods to write data 1 byte at a time. And all char

streams override these methods to write 2 byte data at a time.

**All streams other than PrintStream (the System.out) throws IOException.

File Streams : when we develop a program , we concentrate on user interface

process and data storage. The data storage is managed with variables, arrays,

objects etc. but these are managed with in main memory. To use data in future, we

must store data onto hard disk in the form of files. In java, we use file streams for

data writing and reading.

 We can use the classes FileInputStream / FileOutputStream or

FileReader/FileWriter to read/write data.

The byte stream classes read / write 1 byte at a time and the char streams

read/write 2 bytes.

** for binary files, we must use only byte streams.

Ex:

class MyIO1{

public static void main(String a[]) throws IOException,FileNotFoundException{

FileOutputStream fout=new FileOutputStream(“c:/MyFolder/myfile.txt”);

fout.write(new String(“welcome to java files”).getBytes());

fout.close();

}

}

class MyIO2{

public static void main(String a[]) throws IOException,FileNotFoundException{

FileWriter fw=new FileFileWriter(“c:/MyFolder/myfile.txt”);

fout.write(“welcome to java files”);

fout.close();

}

}

In MyIO1, as we used byte streams, we wrote data by converting string into

byte array and in MyIO2, as we use FileWriter which is a char stream, we wrote

data as string itself.

Instead of fout.write(“welcome to java files”), we can also write as,

fout.write(new String(“welcome to java files”).toCharArray()), by converting

string into char array.

File reading also very similar to above programs, but we use FileInputStream and

FileReader classes.

Q. write about file streams

Filter streams: are used for data conversions between different types of

streams.

For example, for reading data from console (system’s keyboard), we

need to use InputStream class object (System.in). But reading data with

“in” object, returns the ASCII code or reads data into a byte[], which

further needs to be converted into Unicode format to express it to user.

Rather, we can use a class BufferedReader object for reading data. But,

as BuferedReader is a char stream object, it can not interact with

hardware components directly. So we can read data by holding System.in

object with BufferedReader object.

Code :

BufferedReader br=new BufferedReader(new InputStreamReader(

System.in));

String s=br.readLine();

Here the data read from System.in is in ASCII format and the readLine()

method of BufferedReader class returns data in String (Unicode) format.

The class InputStreamReader acts as a filter between System.in object

and br object , that converts data from ASCII standards into Unicode

standards.

Q. write about FILTER streams

Random Access File:

The FileInputStream is used only or reading data from file and the

FileOutputStream are used for writing data to file. But we can not do

both operations at a time with any of those classes.

But the RandomAccessFile provides flexible way of doing both

operations on file at a time.

This class is used for reading and writing to random access file. A random access file

behaves like a large array of bytes. There is a cursor implied to the array called

file pointer, by moving the cursor we do the read write operations. If end-of-file is

reached before the desired number of byte has been read than EOFException

is thrown. It is a type of IOException.

Constructor

Method

Modifier

and Type

Method Method

void close() It closes this random access file stream and releases any

system resources associated with the stream.

FileChannel getChannel() It returns the unique FileChannel object associated with

this file.

Constructor Description

RandomAccessFile(File

file, String mode)

Creates a random access file stream to read from, and optionally to

write to, the file specified by the File argument.

RandomAccessFile(String

name, String mode)

Creates a random access file stream to read from, and optionally to

write to, a file with the specified name.

https://www.javatpoint.com/object-class
https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/c-pointers
https://www.javatpoint.com/throw-keyword
https://www.javatpoint.com/data-transfer-between-channels
https://www.javatpoint.com/java-constructor
https://www.javatpoint.com/java-string

int readInt() It reads a signed 32-bit integer from this file.

String readUTF() It reads in a string from this file.

void seek(long pos) It sets the file-pointer offset, measured from the

beginning of this file, at which the next read or write

occurs.

void writeDouble(double

v)

It converts the double argument to a long using the

doubleToLongBits method in class Double, and then

writes that long value to the file as an eight-byte

quantity, high byte first.

void writeFloat(float v) It converts the float argument to an int using the

floatToIntBits method in class Float, and then writes that

int value to the file as a four-byte quantity, high byte

first.

void write(int b) It writes the specified byte to this file.

int read() It reads a byte of data from this file.

long length() It returns the length of this file.

void seek(long pos) It sets the file-pointer offset, measured from the

beginning of this file, at which the next read or write

occurs.

Q. write about RandomAccecssFile

Serialization:

Serialization in Java is a mechanism of writing the state of an object into a byte-stream.

It is mainly used in Hibernate, RMI, JPA, EJB and JMS technologies, i.e. used in network

applications.

 When an object is transferred over network, the object is divided into data

packets, where there is a chance of loss of object related data. To maintain persistent

data in the objet when transferred over network, the object can be made as serialized

object. The java.io package has an interface Serializable and the class whose object need

to be transferred over network must implement this interface.

Ex:

import java.io.Serializable;

public class Student implements Serializable{

 int id;

 String name;

 public Student(int id, String name) {

 this.id = id;

 this.name = name;

 }

}

Q. write about serialization in java

Applets:

 The java programs are of two types.

➔ Applications

➔ Applets

Applet is a special type of program that is embedded in the webpage to

generate the dynamic content. It runs inside the browser and works at client side.

The basic differences between the applications and applets are :

Applications are Java programs that

are executed within JRE.

Applets are small Java programs that are

executed within a web browser.

Application program execution starts

with main function as the JRE calls

main()

Applet program execution starts with init

function as the browser calls init()

Java application programs have the Applets don’t have local disk and

full access to the local file system and

network.

network access.

Applications can access all kinds of

resources available on the system.

Applets can only access the browser

specific services. They don’t have access

to the local system.

Applications can execute the

programs from the local system.

Applets cannot execute programs from

the local machine.

The advantages of applets are:

➔ It works at client side so have less response time.

➔ Secured

➔ It can be executed by browsers running under many platforms, including

Linux, Windows, Mac Os etc.

The applet can be developed by extending the class “java.applet.Applet”. The

applet program is placed in a web server along with html files and executed in a

web browser embedded into a web page.

**Application programs are compiled and executed at command prompt with the

commands “javac” and “java”.

Ex:

MyApp.java

public class MyApp extends Applet{

 public void init(){

 applet code & design

 }

}

//<applet code=MyApp width=400 height=300> </applet>

The applets are compiled and tested from command prompt with the commands

“javac” and “appletviewer”.

For testing the applet, we must write an applet tag within the same program or

in any other file.

The applet tag and its attributes look as :

<applet code=MyApp width=400 height=300> </applet>

 This code can be placed with in comments in the same source file

MyApp.java or in any other file.

It is compiled as “javac MyApp.java” from command prompt and tested as

“appletviewer MyApp.java” or “appletviewer otherfile name with extension”.

Once testing is completed, it is placed into a web-server alongwith the web-site

while deploying the web site. The applet tag is specified with in a HTML file.

Once the html file is loaded into browser, the applet executes automatically.

The java applets are two types.

➔ Local applets

➔ Remote applets

The applets placed within same web-site are called local applets and they

can be accessed directly.

If the applet placed in some other web site and accessed in our programs,

then they are called remote applets. To specify the path with code attribute of

applet tag, we must specify entire URL of the remote applet.

Questions that can be framed:

➔ What is an applet and explain different types of applets

➔ What are the type of java programs and explain them

➔ What are the differences between applications and applets

Applet life cycle:

 The java’s applet life cycle is as follows :

INITIALIZE -> STAT -> STOP -> DESTROY

These are called with the methods init(), start(), stop() and destroy().

The public void init() is used to initialize the applet. It is called by browser

only once, when the browser opens the web page for first time that is embedded

with applet program

The public void start() is automatically invoked after init() method or when

the browser is maximized

The public void stop() is called when applet is stopped or when the browser

is minimized

The public void destroy() is called when the applet is closed or when the

browser is closed.

As the applet class is derived from java.awt.Component class, we can override the

public void paint() method in an applet. The paint() takes an argument of

java.awt.Graphics class. The RE calls the paint() and it is given with empty

definition in Component class. We can override it as….

 public void paint(Graphics g){

 g.drawString(“welcome to FIRST APPLET”, 100,100);

 }

The Graphics is an abstract class in java.awt package that has more than 40

non-abstract methods like drawstring(), drawOval(), drawRect(), fillOval() etc.

using which we can display things on Applet and other graphical components.

When the paint() executes, it is said that the applet is in Display State.

When an applet program is compiled, the javac generates .class file of the

applet program. This .class file OR the byte code file of applet program is called an

executable applet.

Questions that can be framed:

➔ Write about different states of applet

➔ Write about applet life cycle

➔ Write how to create executable applet

➔ Write about the display state of applet

This part is not in your syllabus…. But it is for your general

information.

HTML : it is Hyper Text Markup Language, the web designing language used to

develop web pages. The HTML has no special editor. The OS editor like notepad

for windows is used to develop web pages.

 These programs are typed in notepad and executed in browser.

The HTML is a TAG driven language. A tag is used to tie up features to the text. A

tag in HTML is represented with < >.

 The HTML tags are two types, Independent tags and Paired tags. The paired

tags have closing tag also. A closing tag is like a normal tag prefixed with a / with

in < >.

Examples :

 : for bold text

 <u> : underlined text

 <i> : italics

 <center> : for center alignment

 : line break

 <p> : paragraph

 <hr> : horizontal row / line

 <html> : denotes starting and ending of html program

 <head> : to place header information like title, keywords if any assigned

 <body> : document area code.

The <html> , <head> and <body> tags are optional from the version 5 of internet

explorer browser. In previous versions these were must tags.

General outlook of html program:

 <html>

 <head>

 Header information

 </head>

 <body>

 Document area code

 </body>

 </html>

Once program is typed in notepad, it must be saved with extension .html (for

example abc.html). it is executed in a browser by simply double clicking with

mouse.

Many tags have attributes for customization of features.

<body> tag attr:

 bgcolor = used to specify background color of document area

 text = to specify text color

<hr> tag attr:

 Color= specify line color

 Width : how much width the line occupies in document area

 Size : thickness of the line

Till here it is not part of your syllabus

APPLET TAG:

The tag <applet> is used to embed an applet program into a web page. It has

a closing tags also. The attributes of <applet> tag are :

Align URL Deprecated − Defines the text alignment around the applet

Alt URL Alternate text to be displayed in case browser does not support applet

archive URL Applet path when it is stored in a Java Archive ie. jar file

Code URL A URL that points to the class of the applet

codebase URL Indicates the base URL of the applet if the code attribute is relative

height pixels Height to display the applet

name name Defines a unique name for the applet

object name Specifies the resource that contains a serialized representation of the applet's

state.

Title test Additional information to be displayed in tool tip of the mouse

Width pixels Width to display the applet.

The ALIGN attribute can be specified with values “LEFT / RIGHT /

CENTER / JUSTIFIED”

We can pass parameters to an applet with the tag <param> with in applet

opening / closing tags.

The tag PARAM has two attributes viz., name and value. The name attribute

is used to specify name for the value and the value attribute is used to specify the

parameter value.

This parameter can be fetched into applet with the method getParameter() of

Applet class.

Ex:

import java.applet.*;

import java.awt.*;

public class MyApp extends Applet

{

 public void init(){

 }

 public void paint(Graphics g)

 {

 String s= getParameter("msg");

 g.drawString(s,100,100);

 }

}

/*<applet code=MyApp width=400 height=300>

<param name="msg" value="HELLO">

</applet>

*/

*** but the java doesn’t support applet programming from the

version JDK 9 onwards. And the browsers also won’t support

applets

Q. write about applet tag

Database Handling Using JDBC:

JDBC or Java Database Connectivity is a Java API to connect and execute the
query with the database. It is a specification from Sun microsystems that
provides a standard abstraction(API or Protocol) for java applications to
communicate with various databases. It provides the language with java
database connectivity standards. It is used to write programs required to access
databases. JDBC, along with the database driver, can access databases and
spreadsheets. The enterprise data stored in a relational database(RDB) can be
accessed with the help of JDBC APIs.

Definition of JDBC(Java Database Connectivity)
JDBC is an API(Application programming interface) used in java programming
to interact with databases. The classes and interfaces of
JDBC allow the application to send requests made by users to the specified
database.
Purpose of JDBC
Enterprise applications created using the JAVA EE technology need to interact
with databases to store application-specific information. So, interacting with a
database requires efficient database connectivity, which can be achieved by
using the ODBC(Open database connectivity) driver. This driver is used with
JDBC to interact or communicate with various kinds of databases such as
Oracle, MS Access, Mysql, and SQL server database.

An Overview of DBMS:

Database is a collection of related data and data is a collection of facts and figures that
can be processed to produce information.

Mostly data represents recordable facts. Data aids in producing information, which is
based on facts. For example, if we have data about marks obtained by all students, we
can then conclude about toppers and average marks.

https://www.geeksforgeeks.org/classes-objects-java/
https://www.geeksforgeeks.org/interfaces-in-java/
https://www.geeksforgeeks.org/difference-odbc-jdbc/

A database management system stores data in such a way that it becomes easier to
retrieve, manipulate, and produce information.

Traditionally, data was organized in file formats. DBMS was a new concept then,
and all the research was done to make it overcome the deficiencies in traditional style
of data management

A DB product when installed into system, the DB user interface ,

DB Engine and a Physical DB is installed into system. The DB Engine is

the actual runtime of the DB. It includes number of components like data

descriptions, a language called SQL to interact with DB, ODBC (Open

DB Connectivity) , meta data etc.

The SQL a language used for interacting with DB and the SQL is

classified into 2 types dynamic and embedded. The queries passed from

DB UI to DBE are called dynamic SQL and if the same SQL query is

placed in a program and the executed through a program, then it is called

embedded SQL.

The ODBC is the software mechanism through which the data

comes out of the DB that is fetched into a java program using JDBC.

A programmer to work with DB must know CRUD operations.

CRUD stands for Create data, Read data, Update data and Delete data.

Creating data is done with an insert query.

If we have a table STUD(sid, sname and fee), then we load data as….

Insert into stud values(101,’lakshmi’,45000);

Reading data is done with select query:

Select sid,sname,fee from stud

Update is to modify data:

Update stud set fee=38000 where sid=101

Delete is to remove data from table:

Delete from stud where sid=101;

Q. write an overview on DBMS

JDBC Architecture:

 The JDBC is java database connectivity a software mechanism

used to connect to data. It is generally called JDBC driver. It is used to

connect to a DB, through the ODBC of the DB.

When we develop an application, we concentrate on 3 things viz., user

interface, process and data storage. As data is vital in the application, if

all three components are managed with one application, the data is

logically associated with logic of the program and if we modify logic, it

affects the data. To overcome this problem, the application can be

divided into 2 parts, in which one part is managed with java program and

the other part with a DBMS like oracle.

The java program manages user interface and business logic and the

oracle manages the data. Here the application runs on 2 layers viz., java

layer and oracle layer otherwise program layer and DB layer. So it is

called 2tiered architecture.

It works as client-server application. When user uses this application, he

can see only the java program, so it is called front end and the DB is

never worked by user directly as it stays at back of the application, so it is

called backend.

A 2-tiered application looks as :

In above 2-tiered applications, the user interface and the logic are bound

with each other strongly. Where if the user interface is modified it may

affect logic or the user interface need to be updated in all systems to

make use of updations. It is practically impossible to update front end in

all the systems. And to make use of data, every system must have the

front end installed. To overcome this problem, a 3-tiered architecture is

designed , in which the Front End is designed with html and managed by

web-servers and web-browsers. Middle tier (layer) is managed with java

servlets, JSPs etc and the backend is managed with oracle like DB.

Then it is called an enterprise application. Its architecture looks as :

Q. write about JDBC architecture

Write about 2-tiered & 3 tiered architecture

Working with JDBC:

First we need to identify the drivers to be used for connecting java with

DB. There are different types of drivers

JDBC drivers are client-side adapters (installed on the client machine, not on the
server) that convert requests from Java programs to a protocol that the DBMS
can understand. There are 4 types of JDBC drivers:
1. Type-1 driver or JDBC-ODBC bridge driver
2. Type-2 driver or Native-API driver
3. Type-3 driver or Network Protocol driver
4. Type-4 driver or Thin driver

The oracle thin driver is managed with a class “OracleDriver” of

“oracle.dbc.driver” package.

In case of oracle 10g, it is available in the path of oracle installation as a

jar file.

For ex:

C:\oraclexe\app\oracle\product\10.2.0\server\jdbc\lib\ojdbc14.jar

This need to be set in classpath for making use of it.

Once classpath is set, then we can load the above thin driver into memory

for establishing connection. It can be done with the class

“java.lang.Class” and its static method forName().

Code:

Class.forName(“oracle.jdbc.driver.OracleDriver”);

In database terminology it is said that the driver is registered.

The different classes and interface of java.sql package are used for

https://www.geeksforgeeks.org/jdbc-drivers/

fetching data from DB into java program viz.,

DriverManager : it is a class, used to establish connection to the DB

whose URL is specified using above loaded drivers, and returns the

connection as an instance of java.sql.Connection interface.

The DB URL for oracle using thin drivers is :

“jdbc:oracle:thin:@localhost:1521:xe”

The DriverManager has a static method getConnection(), that establish

connection.

Code :

Connection con=

DriverManager.getConenction(“jdbc:oracle:thin:@localhost:1521:xe”,”u

serid”,”password”);

Now…. The DriverManager’s getConnection() establish connection to

oracle DB with name “xe” running on localhost with port number 1521

with given user name and password and returns the connection and that is

held by con.

Connection : this interface is instantiated by the getConnection() of

DriverManager and has methods to create Statement , PreparedStatement

objects. These two objects are used to convert String query into SQL

standard query and execute on DB.

Statement : this interface has methods execute() and executeUpdate() etc

to execute SQL queries. This object is given with query while executing

the query. So each time the query is compiled.

Ex:

Statement st=con.createStatement();

ResultSet rs= st.executeQuery(“select * from emp”);

st.executeUpdate(“update emp set sal=3000 where eid=101”);

PreparedStatemenet : this interface also has same methods execute() and

executeUpdate() as of in Statement interface. This object is given with

query while getting created. Query is not given while executing. So query

is compiled once and can be executed any number of times.

The PreparedStatement has a facility of giving with “place

holders” for values not known, and later the place holders modified with

values. The place holder is represented with a “?”.

Ex1:

PreparedStatement pst1=con.prepareStatement(“select * from emp where

eid=?”);

pst1.setInt(1, Integer.parseInt(tf.getText()));

ResultSet rs1=pst1.executeQuery();

Ex2:

PreparedStatement pst2=con.prepareStatement(“update emp set

ename=?, sal=? where eid=?”);

pst2.setString(1, tf.getText());

pst2.setInt(2, Integer.parseInt(tf_sal.getText()));

pst2.setInt(3, Integer.parseInt(tf_num.getText()));

pst1.executeUpdate();

*irrespective of Statement or PreparedStatement used, the

executeQuery() returns no. of rows data as instance of ResultSet

interface. And the executeUpdate() returns an int representing no. of rows

affected by query.

CallableStatement : used to execute built in stored procedures of the

SQL. i.e. PL/SQL part queries like procedures, functions etc are execute

by this CallableStatement object, to increase the speed of execution of the

query.

ResultSet : it is an interface that is used to move across the data fetched

by executeQuery() of either Statement or PreparedStatement objects.

It has methods first(), previous(), last() and next() to move across each

row of data fetched. The methods getInt(), getString() etc are used to

fetch data of each column in current row.

Ex:

System.out.println(rs.getInt(1) +” “+ rs.getString(2)+” “+ rs.getInt(3));

Q. explain working with JDBC

Write about classes and interfaces used for JDBC connectivity

Explain how to get data from a DB into a java program.

Unit V

Servlets

Introduction:

As we all are aware of the need of creating dynamic web pages i.e the ones which

have the capability to change the site contents according to the time or are able to

generate the contents according to the request received by the client. If we like

coding in Java then the way is Java Servlet. But before we move forward with our

topic let’s first understand the need for server-side extensions.

Servlets are the Java programs that run on the Java-enabled web server or

application server. They are used to handle the request obtained from the

webserver, process the request, produce the response, then send a response back

to the webserver.

Properties of Servlets are as follows:

• Servlets work on the server-side.

• Servlets are capable of handling complex requests obtained from the

webserver.

Servlet Architecture is can be depicted from the image itself as provided below as

follows:

How to run servlets:

 The Servlets are not executed directly like a simple java program. They are

executable only on a web server.

The J2EE when installed into system, it has a pre-defined web service that can be

started manually and the servlet programs are placed into a location called servlet

container in the J2EE service.

But in practical life as the servlets run on web servers, there are many web servers

that provide servlet api.

Taking example of tomcat web server, the tomcat has its own folder architecture to

get placed with web pages, xml file and servlet classes.

We can create a project folder and place all web pages , xml file and servlet classes

is its specific folders, generae a war file (war=Web ARchieve) and deploy the war

file onto web server using the web server tools.

Or also, We create a project folder in tomcat’s “webapps” folder, create a sub

folder with name “WEB-INF” within project folder, create a subfolder “classes”

within WEB-INF folder and place all servlet .class files into this classes folder.

When user opens the website through a browser and submit a request from a

dynamic web page by clicking the “submit” button, then the request is submitted to

the specific servlet whose URL is specified in the web page.

Thus a servlet program is executed on the web server by sending a request.

Q. explain how to run servlets

Give an introduction to servers and how to run them

How servlets are used on a web server

The Life–cycle of the servlet:

The web container maintains the life cycle of a servlet instance. Let's see the life

cycle of the servlet:

1. Servlet class is loaded.

2. Servlet instance is created.

3. init method is invoked.

4. service method is invoked.

5. destroy method is invoked.

1) Servlet class is loaded

The class loader is responsible to load the servlet class. The servlet class is loaded

when the first request for the servlet is received by the web container.

2) Servlet instance is created

The web container creates the instance of a servlet after loading the servlet class.

The servlet instance is created only once in the servlet life cycle.

3) init method is invoked

The web container calls the init method only once after creating the servlet instance. The init method is used to

initialize the servlet. It is the life cycle method of the javax.servlet.Servlet interface. Syntax of the init method is

given below:

public void init() throws ServletException

4) service method is invoked

The web container calls the service method each time when request for the servlet

is received. If servlet is not initialized, it follows the first three steps as described

above then calls the service method. If servlet is initialized, it calls the service

method. Notice that servlet is initialized only once. The syntax of the service

method of the Servlet interface is given below:

public void service(ServletRequest request, ServletResponse response) throws Ser

vletException, IOException

5) destroy method is invoked

The web container calls the destroy method before removing the servlet instance

from the service. It gives the servlet an opportunity to clean up any resource for

example memory, thread etc. The syntax of the destroy method of the Servlet

interface is given below:

public void destroy()

Q. explain the servlet Life cycle

servlet API:

The javax.servlet and javax.servlet.http packages represent interfaces and classes

for servlet api.

The javax.servlet package contains many interfaces and classes that are used by the

servlet or web container. These are not specific to any protocol.

The javax.servlet.http package contains interfaces and classes that are responsible

for http requests only.

There are many interfaces in javax.servlet package. They are as follows:

1. Servlet : base interface to all servlets

2. ServletRequest : used to handle request received from client

3. ServletResponse : used to handle responses to be sent to client using streams

4. RequestDispatcher etc

Classes in javax.servlet package

There are many classes in javax.servlet package. They are as follows:

1. GenericServlet : is an abstract class that has init(), service() methods to be

overridden.

2. ServletInputStream

3. ServletOutputStream

4. ServletException and so on

Interfaces in javax.servlet.http package

There are many interfaces in javax.servlet.http package. They are as follows:

1. HttpServletRequest : used to handle http specific requests

2. HttpServletResponse : used to handle http specific responses

3. HttpSession : used to manage sessions between the requests and responses

Classes in javax.servlet.http package

There are many classes in javax.servlet.http package. They are as follows:

1. HttpServlet : it is derived from GenericServlet and has methods doGet() and

doPost() to be overridden by programmer.

2. Cookie : it is also used for session management.

** when using tomcat server for running the servlets, till the tomcat version8.0

version, the API is named as javax.servlet and javax.servlet.http. but from the

version tomcat9.0 onwards, the API is changed to Jakarta.servlet and

Jakarta.servlet.http.

So to run servlets in current versions of tomcat server, we import jakarta.servlet.*

and import jakarta.servlet.http.*;

Q. explain the servlet API

Multitier Applications using JDBC from a servlet:

Servlets are the server-side components that enhance the capability of Java-

enabled servers and allow a variety of network-based services. For example,

servlets with the database communication can facilitate solutions for distributed

applications.

Typical three-tier architecture for database applications is shown in the Figure.

The first tier (client) contains a browser (such as Netscape or Microsoft IE). The

second tier contains the Java-enabled web server and the JDBC driver (for

example, JDBC-ODBC bridge driver). The database is contained in the third tier.

Servlets allow dynamic HTML pages to communicate with the client and database

through JDBC

https://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language
https://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms
https://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms
https://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language
https://ecomputernotes.com/servlet/servlet-with-mysql-database/jdbc
https://ecomputernotes.com/servlet/servlet-with-mysql-database/jdbc
https://ecomputernotes.com/java/what-is-java-evolution/odbc

Writing JDBC/Servlet

Consider the example of the TestDataBaseCon servlet in Program which illustrates

the use of the servlet framework in JDBC/Servlet communication. This servlet

makes a connection to the database and returns data in HTML form.

Program Making a database connection using the init() method.

public class TestDataBaseCon extends GenericServlet

{

 Connection con = null;

 public void init() throws ServletException

 {

 try{

 class.forName("oracle.jdbc.driver.OracleDriver");

con=DriverManager.getConnection(“jdbc:oracle:thin:@localhost:1521:xe”,

“system”,”1234”);

 }

 catch(ClassNotFoundException e)

 {

 System.out.println("problem in loading the class:");

 }

 catch(SQLException e)

 {

 System.out.println("Sql error");

 }

 }

 public void service(ServletRequest req, ServletResponse res){

 //do the process that is to be executed with this servlet

 }

 public void destroy()

 {

 // Close the connection and allow it to be garbage collected

https://ecomputernotes.com/servlet/intro/servlet
https://ecomputernotes.com/servlet/intro/servlet

 con.close();

 con= null;

 }

}

Servlets are built by extending a basic Servlet class and overriding some of the

methods to deal with incoming client requests. TestDataBaseCon extends the

GenericServlet class that provides most of the capabilities needed to serve client

requests. After the servlet is loaded, three main methods are involved in the life-

cycle of a servlet.

The init() used to initialize the DB connection, and the service() is used to provide

the service to be given by that servlet and the destroy() is used to close the

connection.

Q. explain multi tier application with DB connection in a servlet.

Networking and Remote Method Invocation

Introduction to Networking:

Computers running on the Internet communicate to each other using either the

Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP), as

this diagram illustrates:

When you write Java programs that communicate over the network, you are

programming at the application layer. Typically, you don't need to concern

yourself with the TCP and UDP layers. Instead, you can use the classes in

the java.net package. These classes provide system-independent network

communication.

a system to be in networks.... should have some standards called protocols. the

basic protocols are :

IP : is internet protocol taht specifies that each system must be identified with a

unique number called IP address.

an ip address is a 4 byte number where each byte is separated with a DOT.

ex :

 192.168.0.1

TCP: specifies that, when data transferred over network, it must be divided into

small pieces called data packets and then transferred. at the destination all DPs are

merged into one file and expressed to user.

in olden days, the IP and TCP were 2 different protocols. but now a days, it is

combined into one and called TCP/IP suit.

** the TCP is a connection oriented protocol.

Understanding Ports:

An IP address alone is not sufficient for running network applications, as a

computer can run multiple applications and/or services.

Just as the IP address identifies the computer, The network port identifies

the application or service running on the computer.

A port number uses 16 bits and so can therefore have a value

from 0 to 65535 decimal

Port numbers are divided into ranges as follows:

Port numbers 0-1023 – Well known ports. These are allocated to server services by

the Internet Assigned Numbers Authority (IANA). e.g Web servers normally

use port 80 and SMTP servers use port 25 (see diagram above).

Ports 1024-49151- Registered Port -These can be registered for services with

the IANA and should be treated as semi-reserved. User written programs should

not use these ports.

Ports 49152-65535– These are used by client programs and you are free to use

these in client programs. When a Web browser connects to a web server the

browser will allocate itself a port in this range.

Q. write about basic protocols and port numbers required for networking

Networking Classes in JDK :

There are number of classes in java.net package used for network applications. The

basic classes used are Socket and ServerSocket. These classes are used to transfer

data between systems as per TCP standards.

The system on which ServerSocket object runs is called a server system and the

client will have a Socket object running.

The server system will have a ServerSocket object and a Socket object running on

it and the client will have only Socket object. The ServerSocket listens and the

socket objects are used to transfer data over network as per TCP by creating

streams generated from socket object.

ServerSocket: this can listen.

const :

 ServerSocket()

 ServerSocket(int port_no)

methods :

accept() : creates a Socket instance (that works as a P.A. to this SS)

Socket: this class is used for creating a Socket object, that can transfer and receive

data with the help of streams developed from it.

const :

 Socket();

 Socket(String ip/sys_name, int port_no);

methods :

 getInputStream()

 getOutputStream()

CODE : - MySS1.java code that need to be executed on server system.

import java.net.*;

import java.io.*;

class MySS1

{

 public static void main(String a[])throws Exception

 {

 ServerSocket ss=new ServerSocket(8765);

 Socket skt=ss.accept();

 InputStream is=skt.getInputStream();

 OutputStream os=skt.getOutputStream();

 byte b[];

 String data;

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

 while(true)

 {

 b=new byte[100];

 is.read(b);

 data=new String(b);

 data=data.trim();

 System.out.println("CLIENT:>"+data);

 System.out.print("SERVER:>");

 data=br.readLine();

 os.write(data.getBytes());

 }

 }

}

CODE : - MySkt1.java code that need to be executed on client machine.

import java.net.*;

import java.io.*;

class MySkt1

{

 public static void main(String a[]) throws Exception

 {

 Socket skt=new Socket("rajanipc",8765);

 OutputStream os=skt.getOutputStream();

 InputStream is=skt.getInputStream();

 byte b[];

 String data;

 BufferedReader br=new BufferedReader(new

InputStreamReader(System.in));

 while(true)

 {

 System.out.print("CLIENT:>");

 data=br.readLine();

 os.write(data.getBytes());

 b=new byte[100];

 is.read(b);

 data=new String(b);

 data=data.trim();

 System.out.println("SERVER:>"+data);

 }

 }

}

Q. write about networking classes and how to use them?

Introduction to RMI:

RMI stands for Remote Method Invocation. It is a mechanism that allows an

object residing in one system (JVM) to access/invoke an object running on another

JVM.

RMI is used to build distributed applications; it provides remote communication

between Java programs. It is provided in the package java.rmi.

RMI Architecture:

In an RMI application, we write two programs, a server program (resides on the

server) and a client program (resides on the client).

• Inside the server program, a remote object is created and reference of that

object is made available for the client (using the registry).

• The client program requests the remote objects on the server and tries to

invoke its methods.

RMI uses stub and skeleton object for communication with the remote object. The

STUB and SKEL classes are generated from server objects with rmi compiler that

is activated with command “rmic”. The SKEL class is placed on server system and

the STUB class is placed on client system. The skel-stub establish communication

from client to server and vice-versa.

The method of request and data send from client to server through the STUB and

SKEL is called marshalling and the process of results sent from SKEL to STUB is

called un-marshalling. The RMI programs establish communication on RMI

protocol which is managed by a built in program of JDK called “rmiregistry”.

The different interfaces, classes used for RMI application are :

Remote (Interface) :

The interface java.rmi.Remote is a marker interface that defines no methods:

 public interface Remote {}

In RMI, a remote interface is an interface that declares a set of methods that may

be invoked from a remote Java virtual machine. As the pre-defined interface is a

market interface, we extend this Remote interface with a user interface.

UnicastRemoteObject (Class) : The UnicastRemoteObject class defines a non-

replicated remote object whose references are valid only while the server process is

alive. The UnicastRemoteObject class provides support for point-to-point active

object references (invocations, parameters, and results) using TCP streams.

Objects that require remote behavior should extend RemoteObject, typically via

UnicastRemoteObject

Naming (class) : this class has methods for binding names to server objects running

on remote systems that can be looked up from a client.

Methods : bind(“string name”, server obj)

rebind(“string name”, server obj)

lookup(“string name”)

RemoteException : the classes that run on rmi protocol always throws

RemoteException.

Q. write about classes and interfaces used in RMI applications.

Give an introduction to RMI and its related classes.

Implementing Remote class and interface:

MyInt.java

import java.rmi.*;

public interface MyInt extends Remote

{

public int add(int a, int b) throws RemoteException;

}

MyServer.java

import java.rmi.*;

import java.rmi.server.*;

public class MyServer extends UnicastRemoteObject implements MyInt

{

 public MyServer() throws RemoteException

 {}

 public int add(int a, int b) throws RemoteException

 {

 return a+b;

 }

}

ServerRun.java

import java.rmi.*;

class ServerRun

{

 public static void main(String a[]) throws Exception

 {

 Naming.rebind("ms",new MyServer());

 }

}

MyClient.java

import java.rmi.*;

class MyClient

{

 public static void main(String a[]) throws Exception

 {

 MyInt mi= (MyInt)Naming.lookup("ms");

 System.out.println(mi.add(5,6));

 }

}

compile the MyInt.java program, it generates MyInt.class

compile MyServer.java program, it generates MyServer.class

compile the MyServer with “rmic” that generates SKEL & STUB classes.

NOTE: from the JDK1.5 version onwards, the skel is auto generated when a request

is submitted. We get only stub class created physically now.

Compile server running class and client program.

Copy user interface, server program, server running program byte code files onto

server machine.

Copy user interface, client program and stub class byte code files onto client

machine.

Use the command “Start rmiregistry” at command prompt that maintains rmi

protocol on server machine.

Run server program on server machine

Run client program on client machine.

Security: always run a security policy file to provide high security to rmi

applications.

policy

// In this example, for simplicity, we will use a policy file that

// gives global permission to anyone from anywhere. Do not use this

// policy file in a production environment.

grant {

 permission java.net.SocketPermission "*", "accept,resolve";

};

Q. how to implement remote interfaces and classes?

How an rmi program is executed?

	BCA 3 SEM UNIT 1
	BCA 3 SEM UNIT 2
	BCA 3 SEM UNIT 3
	BCA 3 SEM UNIT 4
	BCA 3 SEM UNIT 5

