SRI VENKATESWARA UNIVERSITY B.A. / B.Sc. DEGREE COURSE IN MATHEMATICS III SEMESTER

(Under CBCS W.E.F. 2021-22)

Course Outcomes:

After successful completion of this course, the student will be able to;

- 1. Acquire the basic knowledge and structure of groups, subgroups and cyclic groups.
- 2. Get the significance of the notation of a normal subgroups.
- 3. Get the behavior of permutations and operations on them.
- 4. Study the homeomorphisms and isomorphism's with applications.
- 5. Understand the ring theory concepts with the help of knowledge in group theory and to prove the theorems.
- 6. Understand the applications of ring theory in various fields.

Course Syllabus:

UNIT – I (12 Hours)

GROUPS :

Binary Operation – Algebraic structure – semi group-mooned – Group definition and elementary properties Finite and Infinite groups – examples – order of a group, Composition tables with examples.

UNIT - II (12 Hours)

SUBGROUPS :

Complex Definition – Multiplication of two complexes Inverse of a complex-Subgroup definition- examples-criterion for a complex to be a subgroup. Criterion for the product of two subgroups to be a subgroup-Union and Intersection of subgroups.

Co-sets and Lagrange's Theorem :

Cossets Definition – properties of Cossets–Index of a subgroups of a finite groups–Lagrange's Theorem.

UNIT -III (12 Hours)

NORMAL SUBGROUPS :

Definition of normal subgroup –Criterion for a subgroup to be a normal subgroup – intersection of two normal subgroups – Sub group of index 2 is a normal sub group –quotient group – criteria for the existence of a quotient group.

HOMOMORPHISM :

Definition of homomorphism – Image of homomorphism - elementary properties of homomorphism – Isomorphism – auto orphism definitions and elementary properties-kernel of a homomorphism – fundamental theorem of Homomorphism.

UNIT – IV (12 Hours)

PERMUTATIONS AND CYCLIC GROUPS :

Definition of permutation – permutations multiplication – Inverse of a permutation – cyclic permutations – transposition – even and odd permutations – Cayley's theorem.

Cyclic Groups :- Definition of cyclic group – elementary properties – classification of cyclic groups.

UNIT – V (12 Hours)

RINGS: Definition of Ring and basic properties, Boolean Rings, divisors of zero and cancellation laws Rings, Integral Domains, Division Ring and Fields, The characteristic of a ring - The characteristic of an Integral Domain, The characteristic of a Field. Sub Rings, Ideals.

Co-Curricular Activities (15 Hours)

Seminar/ Quiz/ Assignments/ Group theory and its applications / Problem Solving.

Text Book :

A text book of Mathematics for B.A. / B.Sc. by B.V.S.S. SARMA and others, published by Scand & Company, New Delhi.

Reference Books:

Abstract Algebra by J.B. Farleigh, Published by Nervosa publishing house.

- 1. Modern Algebra by M.L. Hanna.
- 2. Rings and Linear Algebra by Pundit & Pundit, published by Pragmatic Prakasham.

CBCS/ SEMESTER SYSTEM

(W.E.F. 2020-21 Admitted Batch)

B.A./B.Sc. MATHEMATICS

III SEMESTER

COURSE-III, ABSTRACT ALGEBRA

Time: 3Hrs

Max.Marks:75M

SECTION - A

Answer any **<u>FIVE</u>** questions. Each question carries <u>**FIVE**</u> marks

5 X 5 M=25 M

- 1. Define group. Give an example of a non-abelian group.
- 2. Prove that cancellation laws holds in a group.
- 3. If H and K are two subgroups of a group G, then prove that HK is a subgroup if and only if HK=KH
- 4. If G is a group and H is a subgroup of index 2 in G then prove that H is a normal subgroup.
- 5. Examine whether the following permutations are even or odd

PCI	me	iiui	.101	10 0	uс		·11 (10
(1	2	3	4	5	6	7	8	9)
6	1	4	3	2	5	7	8	9)
(1	2	3	4	5	6	7)		
3	2	4	5	6	7	1)		

- 6. Prove that a group of prime order is cyclic.
- 7. Prove that the characteristic of an integral domain is either prime or zero.
- 8. Prove that a field has no proper ideals.

SECTION - B

Answer <u>ALL</u> the questions. Each question carries <u>TEN</u> marks.

5 X 10 M = 50 M

9. a) Show that the set of n^{th} roots of unity forms an abelian group under multiplication.

(Or)

b) Prove that a finite semi-group with cancellation laws is a group.

10 a) Prove that union of two subgroups is also a subgroup if and only if one is contained in the other.

(Or)

- b) State and prove Langrage's theorem for finite groups.
- 11. a) Prove that a subgroup H of a group G is a normal subgroup of G if the product of two right cosets of H in G is again a right coset of H in G.

(Or)

- b) State and prove fundamental theorem of homomorphism of groups.
- 12. a) Let S_n be the symmetric group on n symbols and let A_n be the group of even permutations. Then show that A_n is normal of S_n and $o(A_n) = \frac{n!}{2}$.

(Or)

- b) Prove that every subgroup of cyclic group is cyclic.
- 13. a) Prove that every finite integral domain is a field.

(Or)

b) Define an ideal of a ring. Prove that intersection of two ideals of a ring is also an ideal.