Paper-1V
Chapter -Physical optics

Plane diffraction grating: Construction of grating:

Plane diffraction grating consists of a number of parallel and equidistant lines ruled
on an optically plane and parallel glass plate by a fine diamond point. Each ruled
line behaves as an opaque line while the transparent portion between two consecutive

ruled lines behaves as a slit.
Grating element or grating constant:

If a be the width of a clear space and b be the width of a ruled line, then the

distance (a+b) is called grating element or grating constant.

The two points in the consecutive clear spaces whose distance of separation is

(a+b) , are called corresponding points.
Theory of grating:

Let a parallel beam of monochromatic light of wavelength A be incident normally
on a plane diffraction grating consisting of NV slits each of width a and with equal
opaque space b between two successive slits. According to Huygens principle every
point of the incident wavefront in the plane of the slits may be regarded as the origin
of secondary spherical wavelets. The wavelets traveling at an angle § with the normal

are brought to focus at Q by a convex lens L.



We consider wave from a point P of the clean space at a distance x from the
central point O. Let # is the angle of diffraction. The path difference between the
waves from O and P

A=0ON=+0OM = xsinb

So, phase difference

2w
6= —A
A
2
0= Tﬁxsinﬁ
0 =kx
where 5
k= %sin@

Let, the phase of wave from O be wt
the phase of wave from P is wt + §

So, the displacement at Q due to wave from P is given by

y = Tej(wH-J) — Teg(wt—l—kx)

where r is the amplitude of the single wave. Let K be the number of waves coming
from unit length of clean space. So, displacement at Q due to waves coming from dx
of the clear space is

dy = Kdzrel@Hk)

dy = Kred@tHka) gy
dy = Re@ttka) qy

where Kr = R is the total amplitude of waves coming from unit length.

Total displacement at Q due to all waves from the whole of the slit

. a/2 d+a/2 (N-1)d+a/2 .
Y= Rej“’t</ e dy + e]kmdx> + ...+ /( eﬂ“;d:v>
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We get

+j2nd
e X

Where Ay = Ra is the total amplitude of waves coming from the slit of width a.
Resultant amplitude after superposition at Q

A= AO +j27d

e x —1

3 +jN2rd
sina e x> —1
«

So, resultant intensity at Q
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This is intensity due to diffraction from the two slits.

sin’Nf
12 = Y I
sin?f

This is intensity due to interference of waves from two slits behaving as two coherent

sources.Here
T

o] (a + b)(sini £ sinf)

>

Condition of minima:

Now the intensity

If (i) I, = 0 or (i)l = 0.

(i) When I; = 0, we get diffraction minima. i.e.

sin‘a

41, =0

a2
sina = 0 = sinmm

where m =
ml,£2,£3, ....... etc. Hence,

o = mm

asinfd = mA

(ii) When I, = 0, we get interference minima. Hence,
. , 7T
sinNp=0= sm2m§
NG =mm
g(a + b)sinf = %w

, m
(a+b)sinf = N)\



Condition of principal maxima:

If the slit width a is very small and observation is confined to the neighborhood of
sina

the central pattern the variation of the factor #7;% is small and under this condition

the maxima will be solely controlled by /5. Hence

Iy = mazimum

sin’Np

- = maximum
sin?f

when

b8 =mm

where m = £1,4+2, ......

g(a +b)sinf = mm

(@ + b)sind = mA

This is the condition for principal maxima.

In the limit N j NB
sin cos
Ltg yyyun—— = NLtg ypp———— =
o sinf = cosfs

Using L Hospital’s rule, we get
I, = N?

and o
sin‘a

— X N> =I;N?
(67

[=ILm=1

Conditions for secondary minima and maxima: For maxima or minima

ah _
dp
2NsinNf.cosNB  2sin®Nf.cosf 0
sin?f3 sin3p B
. 2N
2817? 5 b (NcotNﬁ — cotﬁ) =0
sin
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Hence for maxima or minima (i)

sin?NB 0
sin?B
sinNpB 0
sinB

or (ii)
NcotNp — cot =0

(i) Secondary maxima:

When sinNS = 0, but sinf # 0,

sinN [
- =0
sinf
Hence, intensity be zero. So, for minima
NB = +sm

7T s
—(a+b)sind = +—
3 (a +b)sind N

, s
(a + b)sind = :EN)\

Here s has integral values.
(ii) Secondary maxima:

For the condition
NcotNB — cot =0

d*I,

ap?

Here § = mm gives the principal maxima. The values of beta which satisfy the

< 0(=Ve)

condition
NcotN S = cotf

give the position of secondary maxima.



Now,
NcotN S = cotf
N?cot’? N3 = cot?B
,c0s’ N cos®f
sin?NB  sin?f
A2 cos’Np _ sin’Np
cos?f sin?f
A2 (1 — sin®Np) _ N?sin’Np
(1 — sin?p3) N2sin?f3
sin?NB (1 —sin?NB)  N?sin>Np

sin2B (1—sin2B)  N2sin?j
sin®? NB N?
sin2B 1+ (N2 —1)sin2f3
N2
I

T 1+ (N? —1)sin?p

Hence, the intensity of secondary maxima is given by

Ism = Il X IQ
N2
Iy, =17 X -
P (N2 —1)sin2B
1
Ism:Im -
pm X 1+ (N2 —1)sin23
Iy 1

Lm 1+ (N2 —1)sin23
This equation shows that as /N increases, the intensity of secondary maxima relative
to principal maxima decreases. When N is very large, the secondary maxima be very

weak. For this, the secondary maxima are not observed with a grating having large
N.



In Fig. curves are drawn by plotting sin? N against N3, sin?$ against 8 and
sin’Np
NZ2sin2f
fall off aS we proceed towards the middle region between two consecutive principal

against s. It is shown from this fig. that the intensities of secondary maxima

maxima. These secondary maxima are unequally spaced and are not quite symmet-

rical.
Missing order in a diffraction grating:

A certain order interference maxima will be absent if a diffraction minima is
produced at the same place (§). We have m-th order principal maximum

(a + b)sing = mA (1)

We have s-th order diffraction minimum

asinf) = s\ (2)
Dividing (1) and (2), we get
atb n
a s
When d = 2a, or a = b, then
n=2s

i.e.2,4,6, ..etc interference fringes will be absent i.e. they will be missing in the

diffraction pattern..

If d = 3a, then

n =3s

i.e.3,6,9, .....etc interference fringes will be absent i.e. they will be missing in the

diffraction pattern..
Ifa+b=a,i.e.
b=0

, The two slits join and all the orders of the interference maxima will be missing. The

diffraction pattern is due to a single slit of width equal to 2a.
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Dispersive power of a grating:

The angular dispersive power % of a grating is defined as the rate of change of
the angle of diffraction (f) with the change in wavelength. We have for the m-the

order bright band or principal maximum
(a+b)sind = mA
Differentiating w.r.t. A, we get

(@ + b)cosfdd = md
do m

d\ ~ (a+b)cost

Thus
do
a xXxm
do 1
> (a+b)
where ﬁ is the number of ruling per unit length.

Also, % is large for large values of §. When 6 is small, then cosf constant. Hence,

df o< dX

i.e. angular separation between two spectral lines is proportional to the wavelength

difference. Such a spectrum is known as normal spectrum.
bf Comparison of grating and prism spectra:

(i) A prism produces only one spectrum but a grating produces a number of

spectra.
(i) Prism spectrum is brighter than the grating spectrum.

(iii) In prism, the deviation of violet colour is more than the deviation of red

colour. But in grating spectrum the deviation of violet is smaller than that of red.

9



(iv) The dispersive power of a grating is
o m
d\  (a+b)cost
The dispersive power of a prism

do 1

dA B w—1
(v) Resolving power of grating is much greater than that of the prism.

(vi) Grating spectrum is nearly normal but the prism spectrum is never normal.

(vii) Dispersion in the grating spectrum does not depend on the material of the

grating, but dispersion in prism spectrum depends on their material of the prism.
Determination of wavelength of light by using plane diffraction grating:

We have for the m-the order bright band or principal maximum

(a+ b)sind = mA

(a+b)sind
m
sinf

A= —

Pm

Where P = a%b represents the number of rulings per unit length.

A=

Note: If A is known, then

Resolving power

The resolving power of an analyzing instrument is its ability to just separate two

close spectral lines in their diffraction patterns.
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Rayleigh criterion of resolution:

According to Rayleigh two equally bright point sources could be just resolved by
any optical system if the distance between them is such that the central maximum in
the diffraction pattern due to one source coincides exactly with the first minimum in

the diffraction pattern due to other. This is known as Rayleigh criterion of resolution.
OR

The angular separation between the principal maxima of the two diffraction pat-
terns should be equal to half the angular width of either principal maximum. Under
this condition the resultant intensity distribution in the diffraction pattern shows a
distinct dip as shown in fig. at a point half way between the two principal maxima

and we are just able to identify them as separate.

According to Rayleigh the intensity at ’dip’ is about % times the intensity of
either peak in the resultant intensity distribution. If the angular separation is smaller

than this limiting value, the resultant intensity shows a single maximum as shown in
fig.
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Thus two close spectral lines are said to be just resolved when the angular sepa-
ration between the principal maxima of two spectral lines in a given order is equal to

half the angular width of either principal maximum.
Resolving power of a grating:

The resolving power of a grating measures its ability to distinguish two close
spectral lines and is defined by ﬁ. Where dA is the smallest wavelength difference.
According to Rayleigh , two spectral lines of wavelength A and A\ + dA falls on the

first minimum of the wavelength A or vice versa.

Let parallel rays consisting of two wavelengths A and A + d\ be incident on a
grating having grating element d = a + b. Let the angle of diffraction . We have the

condition of m-th oder principal maximum
(@ + b)sinf = mA (1)
Differentiating , we get

(a + b)cosfdd = md\

So, the angular separation (df) between the two principal maxima corresponding to
A and X\ + d\ as shown in fig.

mdA
=" 2
46 (a+ b)cosh @)
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For N number of slits in a grating for angle of diffraction 0, we get
N(a + b)sinf = NmA
For N number of slits in a grating for angle of diffraction 6 + df, we get
N(a+b)sin(d + df) = NmA+ A

Dividing (4) by (3) we get

sin(0 +df)  NmA+ A
sinf ~ Nm)

sinfcosdl + cosfsindf 1

sind Nm
As df is very small, then cosdf — 1 and sindf — df.

sinf + cosfdb 1
o T 14+

sinf Nm
1+ cotdd =1+ !
cotdl = Nom
1
df =
Nmcotl
So, we get from (2)
md\ 1

do =

(a + b)cost ~ Nmcotf
(a+ b)sind = Nm2d\

From (1) and (5), we get

m\ = Nm2d\
A
Z N
-

This gives the resolving power. Substituting, the value of m , we get

A N(a+b)sin

dr )
i . W sinf
dx )\
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Where W = N(a + b) , total width of ruled surface of the grating. When 6 = 90°,
then

A Wsin90°
dx A

A W
5),.. =%

Resolving power of prism:

In this fig. S is a source of light.
L, is a collimating lens.
L, is the telescope lens.
I, is the principal maximum for A
I, is the principal maximum for A + d\
0 is the angle of deviation for A
t is the length of the prism.

We have first (m = 1)minimum of the image I;

asindd = A\
adf = )\
df = é

a

From fig. we get

at+A+a+l0=m7
T A+0

T2 T
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sino = Sin T_ ﬂ
N 2 2

Again,
= Al
t

t

A R
2 7 9]
A ot
SZTLE = San—l

We have for prism refractive index

ladd _dut
20d\  d\2l
do dp

— —+ =

Yax T tdn

As adf = lambda, so, we get the resolving power of prism

A du

==

dhx  d\

So, we see that the resolving power of prism

At
x>

A dp
ax & dx

Fabry-Perot Interferometer:
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Fabry-Perot interferometer is based on the principle of multiple beam interference.

For this it has high resolving power.

This interferometer consists of two glass plates ABCD and EFGH of which the
surfaces AB and EF are plane and parallel and thinly silvered. The thickness d of
the air film between the plates can be changed by moving one of the plates parallel
to itself.

Production of fringes:

A ray PQ incident on the first plate ABCD at an angle . It will be broken up by
repeated reflections from the surfaces AB and EF into a series of transmitted parallel
light at the same angle . These emergent parallel rays are made to converge at a

point P; on the screen S, by a lens .. We have the condition of brightness at P;
2dcosf = mA

This condition will be fulfilled by all points on a circle through P; having its centre at
O;. Thus the fringe be circular in form. When the angle of incidence € changes, the
order number m also changes. These are called fringes of equal inclination. When 6
is large, m must be small. So, we get a number of concentric circular bright and dark

fringes on the screen Ss, the order number of which decreases as we go outwards.
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(i) Angular width:

We have the condition of brightness
2dcosf = mA

—2dsinfdf = dm

Let dm =1, then

—2dsinfdf = \
A
= — 2dsinb

when 6 is greater, sinf is also greater. So, for outer fringes , dfl is small. Thus the
angular separation df between two successive ringers decreases as the radius of rings

increases.
(ii) Linear width:

We have the condition of brightness

2dcosf = mA
2
m = Tdcosﬁ

o2 0
D\ 2 )

Let F' be the focal length of the lens L. So, the radius of m-th order ring

R, = f0.
So, we get
(R,
m= 52 )"
Differentiating, we get
dm — 2d RdRy,
=3P
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When dm = —1, then the change in radii between two successive maxima

_Af
" 2R,.d

AR,

Hence, the rings between closer as R,,, becomes higher.
Intensity distribution:

Let a is the complex amplitude of incident wave on the film at an angle 6.
r be the reflection co-efficient for waves reflected from the outer surface of the film.
r’ be the reflection co-efficient for waves reflected from the inner surface of the film.
t and #' be the amplitude transmission co-efficient for waves transmitted inside and
outside the film.

From Stoke’s law
and
Reflectivity of the film surfaces
and transmissivity

and assuming no absorption, we get
R+T=1-tt'+tt'=1

Now, we have the complex amplitude of
first transmitted ray A; = att’

second transmitted ray A, = att'r"2e'
third transmitted ray As = att'r"e?

etc. Here ¢ is the phase difference between two successive rays and is given by

0= 277r 2dcost
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where p is the refractive index of the medium. Now the resultant amplitude of the
transmitted light is
A:A1+A2+A3+

A = att’ (1 + 726t 4 e >

— !
A = att 1 200

T
1 — p2 eié

So, the intensity of the resultant illumination is

A=a

I=AA" = 0’1 _ T./Qeid X a 1 — T./Qe—ié

T2
T+ R2—R(e® + )
2
Iy r
1+ R? — 2Rcosé
T2
(1= R)%2+2R(1 — cosd)
T2
(1 — R)? + 4Rsin3
T? 1
(1—-R)?1+ Fsin?$

I=a

I =

I:I()

I:I()

I:IO

Where F' = ﬁ is known as the coefficient of fines which determines the sharpness

of fringes.
Maxima:

When § =2mn,m =0,1,2,3,... then FF = 1. Hence

T2

Imaw =1= Iom

As there is no absorption,
R+T=1
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So, for maximum intensity

Minima:

When § = (2m + 1)7r,m =0,1,2,3, ... then F = (1?}%2. Hence

T2
lnin =1 = Io s
As there is no absorption,
R+T=1
T=1-R
So, for minimum intensity Ly
Inin =1 = Io—gl - R;Q

Visibility of fringes:

The visibility V' is defined as

Imam - Imm o 2R
Imaz + Imm B 1+ R2

V=
So, in Fabry-Perot interferometer, the visibility of fringes depends only on the reflect-
ing power.

Sharpness of fringes:

A measure of sharpness is given by the width of the fringes at points where inten-

sity falls to half of its maximum value. i.e. when § = 2mm + 4,5, then

I — Imaa:
2
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We have
T2 1

I
‘(1-R)*1 + Fsin?3

I =
o Imam
N 1+ FSiTL251/2

Imaac _ Imaw

2 B 1 + Fsin251/2
1
51/2 = 2sin~ (ﬁ)
1
s=a( )
1/2 \/F

4
W:261/2:ﬁ

To get sharp fringe, the factor F' has to be increased. This can be done by increasing

Therefore , fringe half width

the reflectivity R of the film surface. For higher reflectivity, bright fringes are ex-
tremely narrow separated from each by relatively broad regions of minima between

them as shown in fig.

Use or applications of Fabry-Perot interference:
(a) Comparison of wavelengths by the method of coincidence:

Let two light of close wavelengths A; and A\y(< A;). The separation (d) between

the plates of the interferometer is so adjusted that the ring systems of two wavelengths
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coincide. Hence, under this condition maximum visibility of the fringes is obtained.
Let

2d1 = ml)\l = m2/\2

where d; is the plate separation and m; and my are two integers.
If separation between the plates is slowly increased, the rings separate out and vis-
ibility decreases. The plate separation is further increased un till the rings coincide
again and maximum visibility is obtained. At that time, if d, be the plate separation,
then

2dy = (my +p)A1 = (ma +p+ 1) X

where p is the increment in the order number of A\;. So,

2(dy — di) =phi = (p+ 1)\,

1 p
A 2(ds — dy)
I p+l1
Ao 2(dy — dy)
Hence,
1 1 p+l p
Ao A 2da—dy)  2(dy—dy)
A1z
AL = 2(dy — dy)

Measurement of wavelength:

When there is a bright fringe at the centre of the field view, the separation between
the plates of the interferometer is d;. When the plate separation is increased to ds,

we get again the bright fringe at the centre.

Let N be the number of bright fringes which cross the centre of the view field,
then
2(d2 — dl) = (m1 — mQ)/\

2(dy — di) = N
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2(dy — dy)
N
From which A can be determined. This method is not accurate.

A=

Study of hyperfine structure:

Fabry-Perot interferometer can be used to investigate the hyperfine structure of
spectral lines. If any fringe of wavelength A; is formed in the neighborhood of the
centre at an angle 6, then

2dcost; = mA;

For the next outer fringe for the same wavelength
2dcostly = (m — 1)\
Let A = A; — AX By the method of coincidence in order m , we get
2dcosfy = mAg = m(A — AN)

AN = M
m
A1
A) =
2dcost,
when 6, is small, then
A1
AN = —
2d
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Cornu’s spiral:

By this method any type of diffraction phenomena can be explained by dividing

the half period zone into a number of sub half period strips or half-period zones.

In this fig. S is a point source of light.
XY is the incident spherical wavefront.
O is the pole of the wavefront.
Here SO = SA =a and OP =b.

We draw a sphere of radius OP = b touching the incident wavefront at O. Now the
path difference

A=SA+ AP - SOP
A =SA+ (AB+ BP)— SOP
A=a+AB+b—(a+b)
A=AB= MO+ ON

Now from the property of a circle

AM?  R?
MO =556
BN? h?
ON=50P~ 2
So, we get
h?  h? h?
—%4—2—[)—%(&—1—1)).
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We consider that this path difference is due to m-th half period zone. So, we get

A
A—m§
Hence,
h?  h? h? A
20t Tttt =my:

Graphical solution:

Let the first half period zone be divided into eight sub-half period zones (e.g.
Ocy > 169 > CoC3 > €3C4 > C4C5 > C5C¢ > CCp > C7Cg). Here, the resultant amplitude
is the vector sum of Oc; > cicp > CoC3 > (C3Cq4 > C4Cx > C5Cq > CgC7 > 6708) i.e.

amplitude
A =ay = 0cy + c1¢9 + cocg + C3¢4 + c4C5 + C5C6 + CgCr + CrCs

There is a continuous phase change from 0 to m which is due to the continuous increase
in obliquity factor from O to cg. Again the second half period zone is also divided
into again eight sub-zones as cgby > biby > byby > b3by > bybs > bsbg > bgby > brbs.
So, the resultant amplitude

A = Ocg + cgbg

A=a;+ ay

Similarly, if instead of eight sub-zones , we take infinitesimal width, then we get a
smooth curve. Hence, the complete vibration curves for whole wavefront will be a

spiral as shown in fig. which is known as Cornu’s spiral.

25



The property of this curve is that any point on the curve, the phase lag ¢ is directly

proportional to the square of the distance v. i.e.

5 ox v

§ = —v?

Here, the distance v is measured along the length of the curve from the point O.

We know that for the path difference of A\, the phase difference is A. So, for the
path difference A, the phase difference is

2w
60 =—A
A
T 2mh?
2V = X aapetd)
2(a+0)
v=~h i

Cornu’s spiral can be used for any diffraction problem.

Maxima and minima in diffraction patterns by Cornu’s spiral:

Let a point P on the spiral. The distance OP = v. A tangent at P makes an
angle § with x-axis. For a small displacement dv, the change of co-ordinates dr and
dy. Here

dz = dvcosd = dvcos (gvz)
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dy = dvsind = dvsin(gﬂ).

So, the co-ordinates z and y of the Cornu’s spiral are given by

_ Y T o
x—/d:r—/o 005(21) )dv
y=/dy=/vsin(zv2>dv

0 2

These integrals are called Fresnel’s integrals. These two integrals represent the hori-

zontal and vertical components of the resultant amplitude. So, the intensity at P
I=K(@"+y%)

when the whole of the wavefront is exposed, then

$=/d$=/()00608(gv2>dv=%
yz/dyz/()oosin(gUZ>dv:%

So, the co-ordinate of Py is (1/2,1/2) and that of P is (—1/2,—1/2).

Case I: At the origin, i.e. when v = 0, then
z=0,y=0

The spiral passes through the origin and symmetric about the origin.
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Case II: At any point on the spiral, the tangent to the curve makes an angle ¢

with x-axis, such that

When v = 0, then ¢ = 0. It means the curve is parallel to the x-axis at the origin.
Again,

9
dp = gvdv

dv 1

o v
Hence, the radius of curvature of the spiral at any point
dv 1

It shows that the increase of v, the radius R of the curvature decreases. Hence it

takes the shape of a spiral. Finally , for v — oo, the curve ends in a point P; or P;.
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