SRI VENKATESWARA UNIVERSITY B.Sc. DEGREE COURSE IN BOTANY SEMESTER SYSTEM WITH CBCS

SEMESTER V

W.E.F. 2022-2023

Skill Enhancement Courses (SECs) for V Semester, from 2022-23

(Syllabus with Learning Outcomes, References, Co-curricular Activities & Model Q.P. Pattern)

Structure of SECs for Semester -V

(To choose **One** pair from the **Three** alternate pairs of SECs)

Univ.	Course	Name of Course	Th.	IE	EE	Credits	Prac.	Mar-	Credits
Code	NO.		Hrs. /	Mar-	Mar		Hrs./	ks	
	6 & 7		Week	ks	-ks		Wk		
	6A	Plant Propagation	3	25	75	3	3	50	2
	7A	Seed Technology	3	25	75	3	3	50	2
		(C	DR)						
	6B	Vegetable Crops – Cultivation	3	25	75	3	3	50	2

	Practices	3	25	75	3	3	50	2
78	Vegetable Crops – Post Harvest Practices	3	25	75	3	3	50	2

(OR)

6C	Plant Tissue Culture	3	25	75	3	3	50	2
7C	Mushroom Cultivation	3	25	75	3	3	50	2

Note-1: For Semester-V, for the domain subject Botany, any one of the three pairs of SECs shall be chosen as courses 6 and 7, i.e., 6A & 7A or 6B & 7B or 6C & 7C.The pair shall not be broken (ABC allotment is random, not on any priority basis).

Note-2: One of the main objectives of Skill Enhancement Courses (SEC) is to inculcate skills related to the domain subject in students. The syllabus of SEC will be partially skill oriented. Hence, teachers shall also impart practical training to students on the skills embedded in syllabus citing related real field situations.

SRI VENKATESWARA UNIVERSITY B.Sc. DEGREE COURSE IN BOTANY SEMESTER SYSTEM WITH CBCS

SEMESTER V

W.E.F. 2022-2023

Skill Enhancement Courses (SECs) for V Semester, from 2022-23

Course Code:

(10h)

COURSE-6A: PLANT PROPAGATION

Max Marks: 100

(Skill Enhancement Course (Elective), Credits: 05)

I. Learning Outcomes:

Students at the successful completion of the course will be able to:

- 1. Explain various plant propagation structures and their utilization.
- 2. Understand advantages and disadvantages of vegetative, asexual and sexual plant propagation methods.
- 3. Assess the benefits of asexual propagation of certain economically valuable plants using apomictics and adventive polyembryony.
- 4. Demonstrate skills related to vegetative plant propagation techniques such as cuttings, layering, grafting and budding.
- 5. Apply a specific macro-propagation technique for a given plant species.

II. Syllabus: (Hours: Teaching: 50, Lab: 30, Field training: 05, others incl. unit tests: 05) (Syllabi of theory, practical and lab (skills) training together shall be completed in 80 hours)

<u>Unit –1:</u> Basic concepts of propagation (10h)

- 1. Propagation: Definition, need and potentialities for plant multiplication; asexual and sexual methods of propagation advantages and disadvantages.
- 2. Propagation facilities: Mist chamber, humidifiers, greenhouses, glasshouses, cold frames, hot beds, poly-houses, phytotrons nursery tools and implements.
- 3. Identification and propagation by division and separation: Bulbs, pseudobulbs, corms, tubers and rhizomes; runners, stolons, suckers and offsets.

<u>Unit – 2:</u> Apomictics in plant propagation

1. Apomixis: Definition, facultative and obligate; types – recurrent, non-recurrent, adventitious and vegetative; advantages and disadvantages.

- 2. Polyembryony: Definition, classification, horticultural significance; chimera and bud sport.
- 3. Propagation of mango, Citrus and Allium using apomictic embryos.

<u>Unit –3</u>: Propagation by cuttings

- 1. Cuttings: Definition, different methods of cuttings; root and leaf cuttings.
- 2. Stem cuttings: Definition of stem tip and section cuttings; plant propagation by herbaceous, soft wood, semi hard wood, hard wood and coniferous stem cuttings.
- 3. Physiological and bio chemical basis of rooting; factors influencing rooting of cuttings; Use of plant growth regulators in rooting of cuttings.

<u>Unit –4:</u> Propagation by layering

- 1. Layering: Definition, principle and factors influencing layering.
- 2. Plant propagation by layering: Ground layering tip layering, simple layering, trench layering, mound (stool) layering and compound (serpentine layering).
- 3. Air layering technique application in woody trees.

<u>Unit –5</u>: Propagation by grafting and budding

- 1. Grafting: Definition, principle, types, graft incompatibility, collection of scion wood stick, scion-stock relationship, and their influences, bud wood certification; micrografting.
- 2. Propagation by veneer, whip, cleft, side and bark grafting techniques.
- 3. Budding: Definition; techniques of 'T', inverted 'T', patch and chip budding.

III. <u>References:</u>

- 1. Sharma RR and Manish Srivastav.2004. Plant Propagation and Nursery Management International Book Distributing Co. Lucknow.
- 2. Hartman, HT and Kester, D.E.1976. Plant Propagation: Principles and Practices, Prentice Hall of India Pvt. Ltd. Bombay.
- 3. Sadhu, M.K. 1996. Plant Propagation. New Age International Publishers, New Delhi.
- 4. Web resources suggested by the teacher concerned and college librarian including reading material.

(10h)

(10h)

(10h)

SRI VENKATESWARA UNIVERSITY

B.Sc. DEGREE COURSE IN BOTANY

V SEMESTER - W.E.F. 2022-23

COURSE-6A: PLANT PROPAGATION

MODEL QUESTION PAPER

Time: 3 hours

Marks: 75 marks

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer any five of the following questions in Part A.Part B consists of 5 Units. Answer one full question (A or B) from each unit (i.e., Q.No 9 from Unit – I, Q.No 10 from Unit – II, Q.No 11 from Unit – III, Q.No 12 from Unit – IV, Q.No 13 from Unit – V). Each question carries 10 marks.

PART – A

Answer any *Five* of the following question.

(5X5=25M)

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	

(P.T.O)

PART –	B
--------	---

9.	(A)
	OR
	(B)
10.	(A)
	OR
	(B)
11	
11.	(A)
	OR
	(B)
12.	(A)
	OR
	(B)
13.	(A)
	OR
	(B)

Answer All The Questions. Each question carries 10 marks (5X10= 50M)

COURSE -6A: PLANT PROPAGATION - PRACTICAL SYLLABUS

- **IV. Learning Outcomes:** On successful completion of this practical course, student will be able to:
 - 1. Make use of different plant propagation structures for plant multiplication.
 - 2. Explore the specialized organs or asexual propagules in some plants for their proliferation.
 - 3. Demonstrate skills on micro propagation of plants through vegetative propagation techniques.
- 4. Evaluate and use a suitable propagation technique for a given plant species.

(30hrs)

V. Practical (Laboratory) syllabus:

The following experiments/practices shall be conducted by students in the lab.

- 1. Preparation of nursery beds flat, raised and sunken beds.
- 2. Propagation through apomictic.
- 3. Propagation by separation and division technique.
- 4. Propagation by cuttings.
- 5. Propagation by layering
- 6. Propagation by grafting.
- 7. Propagation by budding.
- 8. Preparation of potting mixture, potting and repotting.

VI. Lab References:

- Prasad, V. M. and Balaji Vikram, 2018. Practical Manual on Fundamentals of Horticulture and Plant Propagation, Write & Print Publications, New Delhi
- 2. Upadhyay S. K. (Ed.) 2013. Practical Manual Basic Horticulture-I, Akashdeep Printers, New Delhi
- 3. Web sources suggested by the teacher concerned.

VII. Co-Curricular Activities:

- *a)* **Mandatory:** (*Lab*/*field training of students by teacher:* (*Lab: 10 + field: 05 hours*):
- 1. **For Teacher**: Training of students by the teacher in the laboratory/field for a total of not less than 15 hours on the field techniques/skills of different plant propagation structures, containers, preparation of soil, plant propagation through separation and division, apomictics, cuttings, layering, grafting and budding.
- 2. **For Student**: Students shall (individually) visit horticulture nurseries in a University/, research institute /private nursery and observe propagation structures, propagation techniques etc., write their observations and submit a hand-written Fieldwork/Project work/Project

work Report not exceeding 10 pages in the given format to the teacher.

- 3. Max marks for Fieldwork/Project work Report: 05.
- 4. Suggested Format for Fieldwork/Project work Report: Title page, student details, index page, details of place visited, observations, findings and acknowledgements.
- 5. Unit tests (IE).
- b) Suggested Co-Curricular Activities:
- 1. Training of students by experts in plant vegetative propagation methods.
- 2. Assignments (including technical assignments like identifying propagation structures and their operational techniques for a specific plant species.
- 3. Seminars, Group discussions, Quiz, Debates etc. (suggested topics):
- 4. Preparation of videos on plant propagation techniques in relation to different economically useful plants.
- 5. Collection of material/figures/photos related to plant propagation methods, writing and organizing them in a systematic way in a file.
- 6. Visits to Horticulture/Agriculture/Forest nurseries, research organizations, universities etc.
- 7. Invited lectures and presentations on related topics by experts in the specified area.

Model Question Paper pattern for Practical Examination

Semester – V/ Botany Skill Enhancement Course

COURSE -6A: PLANT PROPAGATION

Max. Time: 3 Hrs.

Max. Marks: 50

- 1. Demonstration plant propagation using separation and division /apomictics 'A' $10\,$
- 2. Demonstration plant propagation using cuttings/layering technique 'B'10
- 3. Demonstration of plant propagation using grafting/budding technique 'C'10
- 4. Scientific observation and data analysis

4 x 3 = 12

- D. Plant propagation structure model/photograph
- E. Plant Growth Regulator
- F. Nursery bed model /photograph
- G. Asexual propagule/container/pot mixture for propagation
- 5. Record + Viva-voce

5+3 = 8

SRI VENKATESWARA UNIVERSITY **B.Sc. DEGREE COURSE IN BOTANY** SEMESTER SYSTEM WITH CBCS

SEMESTER V W.E.F. 2022-2023 **COURSE-7A: SEED TECHNOLOGY**

Max Marks: 100

(Skill Enhancement Course (Elective), Credits: 05)

I. Learning outcomes:

Students at the successful completion of the course will be able to:

- 1. Explain the causes for seed dormancy and methods to break dormancy.
- 2. Understand critical concepts of seed processing and seed storage procedures.
- 3. Acquire skills related to various seed testing methods.
- 4. Identify seed borne pathogens and prescribe methods to control them.
- 5. Understand the legislations on seed production and procedure of seed certification.

II. <u>Syllabus:</u> (Hours: Teaching: 50, Lab: 30, Field training: 05, others incl. unit tests: 05) (Syllabi of theory, practical and lab (skills) training together shall be completed in 80 hours)

<u>Unit -1</u>: Seed dormancy

- 1. Seed and grain: Definitions, importance of seed; structure of Dicot and Monocot seed.
- 2. Role and goals of seed technology; characteristics of quality seed material.
- 3. Dormancy: Definition, causes for seed dormancy; methods to break seed dormancy.

<u>Unit -2:</u> Seed processing and storage

- 1. Principles of seed processing: seed pre-cleaning, precuring, drying, seed extraction; cleaning, grading, pre-storage treatments; bagging and labelling, safety precautions during processing.
- 2. Seed storage; orthodox and recalcitrant seeds, natural longevity of seeds.
- 3. Factors affecting longevity in storage; storage conditions, methods and containers.

<u>Unit –3</u>: Seed testing

1. Definition of seed vigour, viability and longevity; seed sampling and equipment; physical purity analysis.

(10h)

(10h)

(10h)

- Technology Laboratory Manual. Scientific Publishers, Jodhpur
- 7. Web resources suggested by the teacher concerned and the college librarian including reading material.

10

- Genetic purity verification, certification, records and reporting. **III. References:**
- 1. Umarani R, Jerlin R, Natarajan N, Masilamani P, Ponnuswamy AS 2006. Experimental Seed Science and
- Technology, Agrobios, Jodhpur
- 2. Agrawal, 2005. Seed Technology. Oxford and IBH Publishing Co.

- Pvt. Ltd., New Delhi
- 3. Desai B D 2004. Seeds Hand Book: Processing and Storage, CRC Press
- 4. Agarwal V K and J B Sinclair 1996, Principles of Seed Pathology, CRC
- Press 5. Tunwar NS and Singh SN. 1988. Indian Minimum Seed
- Certification Standards. CSCB, Ministry of Agriculture, New

6. McDonald, M.B. and L.O. Copland. 1999. Seed Science and

1. Objectives - Indian seed Act; seed rules and seed order; new seed policy (1988).

phases of certification standards (i.e., Land requirement, isolation

3. Issue of certificates, tags and sealing; pre and post control check:

2. Seed Inspector: Duties and responsibilities; classes of seeds,

2. Seed moisture – importance – methods of moisture determination.

germination test; TZ test to determine seed viability; seed health

2. Different seed health testing methods for detecting microorganisms. 3. Management of seed borne diseases; seed treatment methods: spraying

3. Seed germination tests using paper, sand or soil – standard

Unit -4: Seed borne diseases 1. A brief account of different seed borne diseases and their transmission.

Unit -5: Seed certification

testing.

and dusting.

distance) etc.

Delhi.

(10h)

(10h)

SRI VENKATESWARA UNIVERSITY

B.Sc. DEGREE COURSE IN BOTANY

V SEMESTER - W.E.F. 2022-23

COURSE-7A: SEED TECHNOLOGY

MODEL QUESTION PAPER

Time: 3 hours

Marks: 75 marks

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer any five of the following questions in Part A.Part B consists of 5 Units. Answer one full question (A or B) from each unit (i.e., Q.No 9 from Unit – I, Q.No 10 from Unit – II, Q.No 11 from Unit – III, Q.No 12 from Unit – IV, Q.No 13 from Unit – V). Each question carries 10 marks.

PART – A

Answer any *<u>Five</u>* of the following question.

(5X5=25M)

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	

PART –	B
--------	---

9.	(A)
	OR
	(B)
10.	(A)
	OR
	(B)
11.	
11.	(A)
	OR
	(B)
12.	(A)
	OR
	(B)
13.	(A)
	OR
	(B)
	1

Answer All The Questions. Each question carries 10 marks (5X10= 50M)

COURSE -7A: SEED TECHNOLOGY PRACTICAL SYLLABUS

IV. Learning Outcomes: On successful completion of this practical course, student will be able to:

- 1. Demonstrate skills on various methods to break the seed dormancy.
- 2. Determine seed moisture, seed germination percentage, seed viability and vigour.
- 3. Identify the seed borne pathogens and prescribe methods to prevent or control them.
- 4. Evaluate various methods to produce healthy seeds.

V. Practical (Laboratory) syllabus:

- 1. Determination of physical properties of seeds of 3 select local crops (1 each from cereals, millets, pulses and oil seeds).
- 2. Breaking seed dormancy in 3 select local crops.
- 3. Measurement of seed moisture content by O S W A or moisture meter or oven drying method.
- 4. Seed germination tests and evaluation.
- 5. Seed vigour conductivity test.
- 6. Accelerated ageing tests.
- 7. Tetrazolium test.
- 8. Priming and invigoration treatments for improving germination and vigour.
- 9. Techniques of seed health testing visual examination of seeds, washing test, incubation methods, embryo count method, seed soak method for the detection of certain seed borne pathogens.
- 10. Using various types of tools for dusting and spraying pesticides/insecticides.

VI. Lab References:

- 1. Sanjeev Kumar, 2019. Practical Manual Seed Technology of Vegetable Crops, M/s Asian Printery, Ahmedabad
- Divakara Sastry, E.V., Dhirendra Singh and S.S.Rajput, 2013. Seed Technology: Practical Manual, Swami Keshwanand Rajasthan Agricultural University, Jobner
- 3. Web sources suggested by the teacher concerned.

VII. Co-Curricular Activities:

Mandatory: (Lab/field training of students by teacher: (Lab: 10 + field: 05 hours)

1. For Teacher: Training of students by the teacher in the laboratory/field for a total of not less than15 hours on the field techniques/skills of identifying and drawing seed structure, methods

(30hrs)

of breaking seed dormancy, seed cleaning, seed storage, identification of seed borne diseases, seed certification procedure.

- 2. For Student: Students shall (individually) visit horticulture/agriculture/ forest nursery/commercial seed production firms/ seed testing laboratories in government or private sector, observe seed production techniques, processing and storage, seed testing and certification procedures etc., write their observations and submit a hand- written Fieldwork/Project work Report not exceeding 10 pages in the given format to the teacher.
- 3. Max marks for Fieldwork/Project work Report: 05.
- **4.** Suggested Format for Fieldwork/Project work Report: Title page, student details, index page, details of place visited, observations, findings and acknowledgements.
- 5. Unit tests (IE).

a) Suggested Co-Curricular Activities:

- 1. Training of students by experts in seed technology.
- 2. Assignments (including technical assignments like seed processing and storage techniques, seed testing, seed certification, seed borne diseases- prevention and control).
- 3. Seminars, Group discussions, Quiz, Debates etc. (suggested topics):
- 4. Preparation of videos on various aspects related to seed technology.
- 5. Collection of material/figures/photos related to seed technology, writing and organizing them in a systematic way in a file.
- Visits to seed production units in Industries/Horticulture/Agriculture/Forest universities/colleges; research organizations, seed testing laboratories etc.
- 7. Invited lectures and presentations on related topics by experts in the specified area.

Model Question Paper pattern for Practical Examination

Semester – V/ Botany Skill Enhancement Course

COURSE - 7A: SEED TECHNOLOGY

Max. Time: 3 Hrs.	Max. Marks: 50
1. Demonstration of a method to break seed dormancy	'A' 10
2. Determination of seed moisture content/ seed	10
germination test 'B'	
3. Demonstration of test for seed viability/ seed vigour	'C' 10
4. Scientific observation and data analysis	4 x 3 = 12
D. Monocot / Dicot seed	
E. Seed sampling equipment	
F. Seed borne pathogen specimen/photograph	
G. Seed certification agency/procedure	
4. Record + Viva-voce	5+3 = 8

SRI VENKATESWARA UNIVERSITY B.Sc. DEGREE COURSE IN BOTANY SEMESTER SYSTEM WITH CBCS

SEMESTER V W.E.F. 2022-2023

Course Code:

Max Marks: 100

COURSE 6B: VEGETABLE CROPS - CULTIVATION PRACTICES

(Skill Enhancement Course (Elective), Credits: 05)

I. Learning Outcomes:

Students at the successful completion of the course will be able to:

- 1. Identify different vegetable plants and realize their value in human nutrition.
- 2. Analyse the types of soils to cultivate vegetable crops.
- 3. Demonstrate skills on agronomic practices for cultivation of vegetable crops.
- 4. Acquire knowledge on water, weed and disease managements in vegetable farming.
- 5. Comprehend aspects related to harvesting and storage of produce.

II. <u>Syllabus</u>: (Hours: Teaching: 50, Lab: 30, Field training: 05, others incl. unit tests: 05) (*Syllabi of theory, practical and lab (skills) training together shall be completed in 80 hours*)

<u>Unit –1</u>: Introduction to Olericulture

(10h)

(10h)

- 1. Vegetables and Olericulture: Definitions, nutritive value of vegetables and economic significance of vegetable farming.
- 2. Classification of vegetable crops (Botanical, based on climatic zones and economic parts used).
- 3. Types of vegetable gardens (kitchen gardening, terrace gardening, market gardening and truck gardening); implements used in vegetable gardening; vegetable forcing a brief concept.

<u>Unit -2</u>: Cultivation of leafy vegetables

- 1. Leafy vegetables: Definition and a brief account of locally cultivated crops.
- Study of the following leafy vegetable crops: (a) Amaranthus (b) Palak
 (c) Hibiscus cannabinus (d) Fenugreek: systematic position, nutritive value, origin, area, production, improved varieties.
- 3. General cultivation practices such as sowing, planting distance, fertilizer requirements, irrigation, weed management, harvesting.
- 4. Crop specific yield, storage, disease and pest control and seed production.

2. Study of the following crops: (a) *Dolichos* (b) Cluster bean (c)

1. A brief account of locally cultivated peas and beans.

- French bean: Systematic position, nutritive value, origin, area, production, improved Varieties.
 - 3. General cultivation practices such as sowing, planting distance, fertilizer requirements, irrigation, weed management, harvesting.
 - 4. Crop specific yield, storage, disease and pest control and seed production.

<u>Unit –5:</u> Cultivation of root and tuber crops

(10h)

(10h)

- 1. A brief account of locally cultivated root and tuber crops.
- 2. Study of the following crops: (a) Carrot (b) Radish (c) Sweet potato (d) Potato: Systematic position, family, nutritive value, origin, area, production, improved varieties.
- 3. General cultivation practices such as sowing, planting distance, fertilizer requirements, irrigation, weed management, harvesting.
- 4. Crop specific yield, storage, disease and pest control and seed production.

III. <u>References:</u>

- 1. Bose T K et al. (2003) Vegetable crops, Naya Udhyog Publishers, Kolkata.
- 2. Singh D K (2007) Modern vegetable varieties and production, IBN Publisher Technologies, International Book Distributing Co, Lucknow.
- 3. Premnath, Sundari Velayudhan and D P Sing (1987) Vegetables for the tropical region, ICAR, New Delhi
- 4. Shanmugavelu, K. G. 1989. Production Technology of Vegetable Crops. Oxford and IBH Publishing Co. Pvt. Ltd. New Delhi.
- 5. Rana MK. 2008. Scientific Cultivation of Vegetables. Kalyani Publ., New Delhi
- 6. Rubatzky VE and Yamaguchi M. (Eds.). 1997. World Vegetables: Principles, Production and Nutritive Values. Chapman & Hall, London.
- 7. Web resources suggested by the teacher concerned and the college librarian including reading material.

production, improved varieties.

 General cultivation practices such as sowing, planting distance, fertilizer requirements, irrigation, weed management, harvesting.

(d) Brinjal: systematic position, nutritive value, origin, area,

4. Crop specific yield- storage, disease and pest control and seed production

1. Fruity vegetables: Definition and a brief account of locally cultivated

crops. 2. Study of the fruity vegetable crops: (a) Okra (b) Tomato (c) Chillies

Unit -4: Cultivation of peas and beans

Unit –3: Cultivation of fruity vegetables

(10h)

SRI VENKATESWARA UNIVERSITY

B.Sc. DEGREE COURSE IN BOTANY

V SEMESTER - W.E.F. 2022-23

COURSE 6B: VEGETABLE CROPS - CULTIVATION PRACTICES

MODEL QUESTION PAPER

Time: 3 hours

Marks: 75 marks

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer any five of the following questions in Part A.Part B consists of 5 Units. Answer one full question (A or B) from each unit (i.e., Q.No 9 from Unit – I, Q.No 10 from Unit – II, Q.No 11 from Unit – III, Q.No 12 from Unit – IV, Q.No 13 from Unit – V). Each question carries 10 marks.

PART – A

Answer any *<u>Five</u>* of the following question.

(5X5=25M)

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	

(P.T.O)

PART –	B
--------	---

9.	(A)
	OR
	(B)
10.	(A)
	OR
	(B)
11.	
11.	(A)
	OR
	(B)
12.	(A)
	OR
	(B)
13.	(A)
	OR
	(B)
	1

Answer All The Questions. Each question carries 10 marks (5X10= 50M)

<u>COURSE 6B: VEGETABLE CROPS – CULTIVATION PRACTICES – PRACTICAL</u> <u>SYLLABUS</u>

IV. Learning Outcomes: On successful completion of this practical course, student will be able to:

- 1. List out, identify and handle different garden implements.
- 2. Identify the important vegetable crops grown in their locality.
- 3. Demonstrate various skills in cultivation of vegetable crops.
- 4. Identify pests, diseases and their remedies that are specific to a vegetable crop.

V. Practical (Laboratory) Syllabus: (30 hrs)

- 1. Identification of seeds of important local vegetable plants and preparation of herbarium.
- 2. Identification of local vegetable crops and handling of garden tools.
- 3. Analysis of garden soil for ratios of physical characteristics by sieve separation.
- 4. Determination of chemical characters of garden soil (pH, EC, Organic Carbon, SAR).
- 5. Planning and layout of a vegetable crop farm.
- 6. Preparation of nursery bed (raised, sunken and flat beds) and sowing of seeds.
- 7. Transplanting and care of vegetable seedlings.
- 8. Intercultural operations in vegetable plots.
- 9. Estimation of Total Soluble Solids (TSS) by Refractometer in a fruit and a leafy vegetable.
- 10. Estimation of Vitamin C in a fruit and a leafy vegetable by DCIP method.
- 11. Identification of pests and disease-causing organisms on any two vegetable plants.
- 12. Seed extraction in tomato and brinjal.

VI. Lab References:

- 1. Akhilesh Sharma (Ed.), 2013. Practical Manual Olericulture-I, Sheel Packers, New Delhi
- 2. Biswajit Saha and Shri Dharampal Singh, 2013. Practical Manual Olericulture-I, Sheel Packers, New Delhi
- 3. Saini RS, K.D. Sharma, O.P, Dhankhar and R.A. Kaushik (Eds.). 2001. Laboratory Manual of Analytical Techniques in Horticulture. Agrobios, Jodhpur
- 4. Ranganna S. 1986. Handbook of Analysis and Quality Control for Fruit and Vegetable Products. Tata-McGraw Hill, New Delhi
- 5. Web sources suggested by the teacher concerned.

VII. Co-Curricular Activities:

- a) Mandatory: (Lab/ field training of students by teacher: (Lab: 10 + field: 05 hours)
- 1. For Teacher: Training of students by the teacher in the laboratory/field for a total of not less than 15 hours on the field techniques/skills of vegetable plants identification, vegetable gardening, agronomic practices, water, weed and disease management; harvesting and storage of produce.
 - 2. For Student: Students shall (individually) visit a horticulture university/ research station or vegetable crop farm in their locality, observe different vegetable crops/ varieties of a vegetable crop, intercultural operations, pests and diseases, harvesting and storage etc., write their observations and submit to the teacher a hand-written Fieldwork/Project work Report not exceeding 10 pages in the given format.
 - 3. Max marks for Fieldwork/Project work Report: 05.
 - 4. Suggested Format for Fieldwork/Project work Report: Title page, student details, index page, details of place visited, observations, findings and acknowledgements.
 - 5. Unit tests (IE).

b) Suggested Co-Curricular Activities:

- 1. Training of students by related industrial experts or farmers.
- 2. Assignments (including technical assignments like tools in vegetable gardening and their handling, agronomic practices, modern irrigation methods, organic farming practices etc.)
- 3. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
- 4. Preparation of videos on cultivation practices for vegetable crops.
- 5. Collection of material/figures/photos related to different vegetable crop species, writing and organizing them in a systematic way in a file.
- 6. Visits to horticulture universities, research organizations, private vegetable farming units etc.
- 7. Invited lectures and presentations on related topics by field/industrial experts

Model Question Paper Pattern for Practical Examination

Semester – V/ Botany Skill Enhancement Course

Vegetable Crops – Cultivation Practices

Max. Time: 3 Hrs.

Max. Marks: 50

- 1. Demonstration of nursery bed making/transplanting of seedlings 'A'8
- Determination of physical or chemical characters of a given soil sample / Preparation of slide and identification of pest/disease-causing organism in plant part given 'B'
- 3. Estimation of Total Soluble Solids/Vitamin-C in a given plant sample 'C' 12
- 4. Scientific observation and data analysis
 - D. Identification of a garden tool
 - E. Identification of seed/specimen of a vegetable crop species
 - F. Identification of a weed/irrigation method
 - G. Identification of a pest/disease causing organism
- 5. Record + Viva-voce

5+3 = 8

 $4 \ge 3 = 12$

10

SRI VENKATESWARA UNIVERSITY B.Sc. DEGREE COURSE IN BOTANY SEMESTER SYSTEM WITH CBCS

SEMESTER V

W.E.F. 2022-2023

Course Code: Max Marks: 100

COURSE 7B: VEGETABLE CROPS - POST HARVEST PRACTICES

(Skill Enhancement Course (Elective), Credits: 05)

I. Learning Outcomes:

Students at the successful completion of the course will be able to:

- 1. Understand various practices for vegetable produce from harvesting to marketing.
- 2. Demonstrate skills on storage, processing and preservation of vegetables.
- 3. Summarize causes for spoilage of vegetables before and during storage and methods to prevent and control them.
- 4. Make use of preservation methods to reduce the loss of vegetable produce.
- 5. Explain about value added products, packaging and marketing of vegetables.

II. <u>Syllabus:</u> (Hours: Teaching: 50, Lab: 30, Field training: 05, others incl. unit tests: 05) (Syllabi of theory, practical and lab (skills) training together shall be completed in 80 hours)

<u>Unit –1</u>: Introduction to Post Harvest Practices

- 1. Post-harvest technology: Definition; importance, scope and future status of post-harvest management of vegetables.
- 2. Study of maturity standards of vegetables; harvest techniques of vegetables, methods stages, signs of harvesting; harvesting and its relationship with quality, sorting and grading.
- 3. Careful handling of harvested vegetables; pre-harvest and post-harvest factors responsible for ripening.

<u>Unit –2</u>: Methods of storage

- 1. Climacteric and non-climacteric types of vegetables.
- 2. Methods of storage to prolong shelf life of harvested vegetables; on-farm storage, evaporatively cooled stores, ventilated storage, pit storage etc.
- 3. Refrigerated storage, refrigeration cycle, controlled and modified atmosphere, hypobaric storage.

(10h)

(10h)

<u>Unit –3:</u> Processing of vegetables

- 1. Causes for spoilage of vegetables and control measures during storage; post-harvest disease and pest management.
- 2. Techniques to prevent deterioration; vegetable processing equipment; minimal processing of vegetables.
- 3. Safe chemicals and microbial limits; application of growth regulators for quality assurance; grading.

Unit -4: Preservation and value-addition

- 1. Importance and scope of vegetable preservation in India; principles underlying general methods of preservation.
- 2. Methods of preservation; food additives and food colours.
- 3. Fried products, process of frying; dried vegetables; sauces and chutneys, pickles and salted vegetables; by-product and waste utilization.

Unit – 5: Marketing

- 1. Packing line operations, packaging of vegetables and their products; transportation; codex norms for export of perishables.
- 2. Demand supply analysis of important vegetables; market potential of various vegetables products.
- 3. Important marketing agencies and institutions; importance of cooperative marketing.

III. References:

- 1. Salunkhe DK and Kadam SS. (Ed.). 1998. Hand Book of Vegetable Science and Technology: Production, Composition, Storage and Processing. Marcel Dekker, New York.
- 2. Arthey D and Dennis C. 1996. Vegetable Processing. Blackie/Springer-Verlag, New York
- 3. Verma LR and Joshi VK. 2000. Post-harvest Technology of Fruits and Processing, Vegetables: Handling, Fermentation and Waste Management. Indus Publishing Company, New Delhi
- 4. Srivastava RP and Kumar S. 2003. Fruit and Vegetable Preservation: Principles and Practices. International Book Distribution Company, Lucknow.
- 5. Giridharilal GS, Siddappa and Tandon GL. 1986. Preservation of Fruits and Vegetables. ICAR, New Delhi.
- 6. Web resources suggested by the teacher concerned and the college librarian including reading material.

(10h)

(10h)

(10h)

SRI VENKATESWARA UNIVERSITY

B.Sc. DEGREE COURSE IN BOTANY

V SEMESTER - W.E.F. 2022-23

COURSE 7B: VEGETABLE CROPS – POST HARVEST PRACTICES

MODEL QUESTION PAPER

Time: 3 hours

Marks: 75 marks

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer any five of the following questions in Part A.Part B consists of 5 Units. Answer one full question (A or B) from each unit (i.e., Q.No 9 from Unit – I, Q.No 10 from Unit – II, Q.No 11 from Unit – III, Q.No 12 from Unit – IV, Q.No 13 from Unit – V). Each question carries 10 marks.

PART – A

Answer any *Five* of the following question.

(5X5=25M)

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	

(P.T.O)

PART – I	3
----------	---

9.	(A)
	OR
	(B)
10.	(A)
	OR
	(B)
11.	
11.	(A)
	OR
	(B)
12.	(A)
	OR
	(B)
13.	(A)
	OR
	(B)
	1

Answer All The Questions. Each question carries 10 marks (5X10= 50M)

<u>COURSE 7B: VEGETABLE CROPS – POST HARVEST PRACTICES – PRACTICAL</u> <u>SYLLABUS</u>

IV. Learning Outcomes: On successful completion of this practical course, student will be able to:

- 1. Identify stages of maturity in vegetable crops.
- 2. Handle material for storage of vegetables.
- 3. Identify physical and biological causes for spoilage of vegetables.
- 4. Make some value-added products of vegetables.

V. Practical (Laboratory) Syllabus:

(30 hrs)

- 1. Maturity selection and harvest, harvesting practices.
- 2. List and cost of equipment, utensils, and additives required for small scale processing industry.
- 3. Study of different types of spoilages in fresh as well as processed vegetables.
- 4. Identification and classification of spoilage organisms.
- 5. Estimation of total carbohydrates (Anthrone method) in a stored vegetable and un- stored vegetable.
- 6. Estimation of protein (Lowry method) in a stored vegetable and un-stored vegetable.
- 7. Sensory evaluation of fresh and processed vegetables.
- 8. Assessment of quality and grading, pre-packaging and protective treatments.
- 9. Identification of packaging materials, containers for packaging.
- 10. Preparation of pickle from a vegetable.
- 11. Preparation of tomato sauce, ketchup and chutney.

VI. Lab References:

- 1. Swati Barche, Reena Nair and P. K. Jain, 2016. A Practical Manual on Post Harvest Value Addition and Processing of Horticulture Crops. Agrobios (India), Jodhpur
- Antonio L. Acedo Jr., Md. Atiqur Rahman, Borarin Buntong and Durga Mani Gautam, 2016. Vegetable Postharvest Training Manual, AVRDC - The World Vegetable Center, Taiwan
- 3. Akhilesh Sharma (Ed.), 2013. Practical Manual Olericulture-I, Sheel Packers, New Delhi
- 4. Biswajit Saha and Shri Dharampal Singh, 2013. Practical Manual Olericulture-I, Sheel Packers, New Delhi
- 5. Web sources suggested by the teacher concerned.

VII. Co-Curricular Activities:

a) Mandatory: (*Lab*/ *field training of students by teacher: (Lab: 10 + field: 05 hours)*

- 1. **For Teacher**: Training of students by teacher in the laboratory/field for a total of not less than 15 hours on the field techniques/skills of harvesting indices of vegetables, storage methods, tools and techniques for processing, causes for spoilage and methods to control, preservation methods, marketing chain and in making value added products.
- 2. For Student: Students shall (individually) visit any one of the places like horticulture university/ research station; vegetable storage units in public and private sector; vegetable processing industries in their locality and observe harvesting practices, storage methods, processing and preservation; grading, value added products and marketing. Write their observations and submit to the teacher a hand-written Fieldwork/Project work Report not exceeding 10 pages in the given format.
- 3. Max marks for Fieldwork/Project work Report: 05.
- 4. Suggested Format for Fieldwork/Project work Report: Title page, student details, index page, details of place visited, observations, findings and acknowledgements.
- 5. Unit tests (IE).

b). Suggested Co-Curricular Activities:

- 1. Training of students by related industrial experts or farmers.
- 2. Assignments (including technical assignments like tools and techniques for storage, processing and preservation, causes for spoilage and methods to avoid losses, value added products of some vegetables, packaging and marketing etc.)
- 3. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
- 4. Preparation of videos on cultivation practices for vegetable crops.
- 5. Collection of material/figures/photos related to harvesting, storage, processing and preservation of vegetable crop produce, writing and organizing them in a systematic way in a file.
- 6. Visits to horticulture universities, research organizations; storage, processing industries in public or private sector; industries making value added products of vegetables etc.
- 7. Invited lectures and presentations on related topics by field/industrial experts.

Model Question Paper Pattern for Practical Examination

Semester - V/ Botany Skill Enhancement Course

COURSE 7B VEGETABLE CROPS – POST HARVEST PRACTICES

Max. Time: 3 Hrs. Max. Marks: 50	
1. Identification of organism(s) responsible for spoilage of vegetable 'A'	8

2. Assessment of quality and grading/ technique of packaging and protective treatment.

10

- 3. Estimation of carbohydrates/protein content in a vegetable sample 'C' 12
- 4. Scientific observation and data analysis $4 \ge 3 = 12$
 - D. Identification of harvesting stage
 - E. Identification of equipment for processing
 - F. Identification of PGR/chemical used for PHT of vegetables.
 - G. Identification of a packaging material/value added product.

5. Record + Viva-voce

5+3 = 8

SRI VENKATESWARA UNIVERSITY B.Sc. DEGREE COURSE IN BOTANY SEMESTER SYSTEM WITH CBCS SEMESTER V

W.E.F. 2022-2023

COURSE 6C: PLANT TISSUE CULTURE

Max Marks: 100

(Skill Enhancement Course (Elective), Credits: 05)

I. Learning Outcomes:

Students at the successful completion of the course will be able to:

- 1. Comprehend the basic knowledge and applications of plant tissue culture.
- 2. Identify various facilities required to set up a plant tissue culture laboratory.
- 3. Acquire a critical knowledge on sterilization techniques related to plant tissue culture.
- 4. Demonstrate skills of callus culture through hands on experience.
- 5. Understand the biotransformation technique for production of secondary metabolites.

II. <u>Syllabus:</u> (Hours: Teaching: 50, Lab: 30, Field training: 05, others incl. unit tests: 05) (Syllabi of theory, practical and lab (skills) training together shall be completed in 80 hours)

Unit -1: Basic concepts of plant tissue culture (10h)

- 1. Plant tissue culture: Definition, history, scope and significance.
- 2. Totipotency, differentiation, dedifferentiation, and redifferentiation; types of cultures.
- 3. Infrastructure and equipment required to establish a tissue culture laboratory.

Unit -2: Sterilization techniques and culture media (10h)

- 1. Aseptic conditions Fumigation, wet and dry sterilization, UV sterilization, ultrafiltration.
- 2. Nutrient media: Composition of commonly used nutrient culture media with respect to their contents like inorganic chemicals, organic constituents, vitamins, amino acids etc.
- 3. Composition and preparation of Murashige and Skoog culture medium.

Unit -3: Callus culture technique

1. Explant: Definition, different explants for tissue culture: shoot tip,

(10h)

axillary buds, leaf discs, cotyledons, inflorescence and floral organs, their isolation and surface sterilization; inoculation methods.

- 2. Callus culture: Definition, various steps in callus culture.
- 3. Initiation and maintenance of callus Growth measurements and subculture; soma clonal variations.

Unit – 4: Micropropagation

(10h)

- 1. Direct and indirect morphogenesis, organogenesis, role of PGRs; somatic embryogenesis and synthetic seeds.
- 2. Greenhouse hardening unit operation and management; acclimatization and hardening of plantlets need, process, packaging, exports.
- 3. Pathogen (Virus) indexing- significance, methods, advantages, applications.

Unit – 5: Applications of plant tissue culture (10h)

- 1. Germplasm conservation: cryopreservation methods, slow growth, applications and limitations; cryoprotectants.
- 2. Plant transformation techniques and bioreactors; production of secondary metabolites-optimization of yield, commercial aspects, applications, limitations.
- 3. Transgenic plants- gene transfer methods; BT cotton.

III. References:

- 1. Kalyan Kumar De (2001) An Introduction to Plant Tissue Culture, New Central Book Agency (P) Ltd., Calcutta
- Razdan, M.K. (2005) Introduction to Plant Tissue Culture, Oxford & IBH Publishers, Delhi
- 3. Bhojwani, S.S. (1990) Plant Tissue Culture: Theory and Practical (a revised edition). Elsevier Science Publishers, New York, USA.
- 4. Vasil, I.K. and Thorpe, T.A. (1994) Plant Cell and Tissue Culture. Kluwer Academic Publishers, the Netherlands.
- 5. Web resources suggested by the teacher concerned and the college librarian including reading material.

SRI VENKATESWARA UNIVERSITY

B.Sc. DEGREE COURSE IN BOTANY

V SEMESTER - W.E.F. 2022-23

COURSE 6C: PLANT TISSUE CULTURE

MODEL QUESTION PAPER

Time: 3 hours

Marks: 75 marks

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer any five of the following questions in Part A.Part B consists of 5 Units. Answer one full question (A or B) from each unit (i.e., Q.No 9 from Unit – I, Q.No 10 from Unit – II, Q.No 11 from Unit – III, Q.No 12 from Unit – IV, Q.No 13 from Unit – V). Each question carries 10 marks.

PART – A

Answer any *<u>Five</u>* of the following question.

(5X5=25M)

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	

PART –	B
--------	---

9.	(A)
	OR
	(B)
10.	(A)
	OR
	(B)
11.	
11.	(A)
	OR
	(B)
12.	(A)
	OR
	(B)
13.	(A)
	OR
	(B)
	1

Answer All The Questions. Each question carries 10 marks (5X10= 50M)

COURSE 6C: PLANT TISSUE CULTURE – PRACTICAL SYLLABUS

- IV. Learning Outcomes: On successful completion of this practical
 - course, student will be able to:
 - 1. List out, identify and handle various equipment in plant tissue culture lab.
 - 2. Learn the procedures of preparation of media.
 - 3.Demonstrate skills on inoculation, establishing callus culture and Micro propagation.
 - 4. Acquire skills in observing and measuring callus growth.
 - 5. Perform some techniques related to plant transformation for secondary Metabolite production.

V. Practical (Laboratory) Syllabus:

(30 hrs)

- 1. Principles and applications of- Autoclave, Laminar Airflow, Hot Air Oven.
- 2. Sterilization techniques for glass ware, tools etc.,
- 3. MS medium Preparation of different stock solutions; media preparation
- 4. Explant preparation, inoculation and initiation of callus from carrot.
- 5. Callus formation, growth measurements.
- 6. Induction of somatic embryos, preparation of synthetic seeds.
- 7. Multiplication of callus and organogenesis.
- 8. Hardening and acclimatization in green house.

VI. Lab References:

- 1. Reinert, J. and M.M. Yeoman, 1982. Plant Cell and Tissue Culture A Laboratory
- 2. Manual, Springer-Verlag Berlin Heidelberg
- 3. Robert N. Trigiano and Dennis J. Gray, 1999. Plant Tissue Culture Concepts and Laboratory Exercises. CRC Press, Florida
- 4. Ashok Kumar, 2018. Practical Manual for Biotechnology, College of Horticulture & Forestry, Jhalawar, AU, Kota
- 5. Chawla, H.S., 2003. Plant Biotechnology: A Practical Approach, Nova Science Publishers, New York
- 6. Web sources suggested by the teacher concerned.

VII. Co-Curricular Activities:

- a) Mandatory: (Lab/field training of students by teacher: Lab: 10 + field: 05 hours)
 - 1. **For Teacher**: Training of students by teacher in the laboratory/field for a total of not less than 15 hours on the field techniques/skills of sterilization procedures, preparation of media, establishment of callus culture, growth measurements; morphogenesis and organogenesis; acclimatization and hardening of plantlets.
 - 2. **For Student**: Students shall (individually) visit anyone of plant tissue culture laboratories in universities/research organizations/private facilities, write their observations on tools, techniques, methods and products of plant tissue culture; and submit a hand-written Fieldwork/Project work Report not exceeding 10 pages to the teacher in the given format.
 - 3. Max marks for Fieldwork/Project work Report: 05
 - 4. Suggested Format for Fieldwork/Project work Report: Title page, student details, index page, details of place visited, observations, findings and acknowledgements.
 - 5. Unit tests (IE).

b) Suggested Co-Curricular Activities:

- 1. Training of students by related industrial experts.
- 2. Assignments (including technical assignments like identifying tools in plant tissue culture and their handling, operational techniques with safety and security, IPR)
- 3. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
- 4. Preparation of videos on tools and techniques in plant tissue culture.
- 5. Collection of material/figures/photos related to products of plant tissue culture, writing and organizing them in a systematic way in a file.
- 6. Visits to plant tissue culture/biotechnology laboratories in universities, research organizations, private firms, etc.
- 7. Invited lectures and presentations on related topics by field/industrial experts

Model Question Paper Pattern for Practical Examination

Semester – V/ Botany Skill Enhancement Course

Course-6C - Plant Tissue Culture

Max. Time: 3 Hrs.	Max. Marks: 50
1. Demonstration of a sterilization technique 'A'	8
2. Preparation of MS medium 'B'	10
3. Demonstration of callus culture technique/growth	$4 \ge 3 = 12$
4. Scientific observation and data analysisD. Tissue culture equipment /photograph	4 x 3 - 12
E. Morphogenesis or organogenesis - photograph	
F. Bioreactor/Secondary metabolite	
G. Transgenic plant/photograph	
5. Record + Viva-voce	5+3 = 8

Course Code:

SRI VENKATESWARA UNIVERSITY B.Sc. DEGREE COURSE IN BOTANY SEMESTER SYSTEM WITH CBCS SEMESTER V W.E.F. 2022-2023

COURSE 7C: MUSHROOM CULTIVATION

Max Marks: 100

(Skill Enhancement Course (Elective), Credits: 05)

I. Learning Outcomes:

Students at the successful completion of the course will be able to:

- 1. Understand the structure and life of a mushroom and discriminate edible and poisonous mushrooms.
- 2. Identify the basic infrastructure to establish a mushroom culture unit.
- 3. Demonstrate skills preparation of compost and spawn.
- 4. Acquire a critical knowledge on cultivation of some edible mushrooms.
- 5. Explain the methods of storage, preparation of value-added products and marketing.

II. Syllabus: (Hours: Teaching: 50, Lab: 30, Field training: 05, others incl. unit tests: 05) (*Syllabi of theory, practical and lab (skills) training together shall be completed in 80 hours*)

<u>Unit –1</u>: Introduction and value of mushrooms

(10h)

- 1. Mushrooms: Definition, structure of a mushroom and a brief account of life cycle; historical account and scope of mushroom cultivation; difference between edible and poisonous mushrooms.
- 2. Morphological features of any four edible mushrooms, Button mushroom (*Agaric us Bosporus*), Milky mushroom (*Calocybe indica*), Oyster mushroom (*Pleurotus sajor-caju*) and Paddy straw mushroom (*Volvariella volvacea*).
- Nutraceutical value of mushrooms; medicinal mushrooms in South India - Ganoderma lucidum, Phellinus rimosus, Pleurotus florida and Pleurotus pulmonaris – their therapeutic value; Poisonous mushrooms - harmful effects.

<u>Unit – 2</u>: Basic requirements of cultivation system (10h)

1. Small village unit and larger commercial unit; layout of a mushroom farm - location of building plot, design of farm, bulk chamber, composting, equipment and facilities, pasteurization room and growing rooms.

- 2. Compost and composting: Definition, machinery required for compost making, materials for compost preparation.
- 3. Methods of composting- long method of composting and short method of composting.

<u>Unit –3</u>: Spawning and casing

(10h)

- 1. Spawn and spawning: Definition, facilities required for spawn preparation; preparation of spawn substrate.
- 2. Preparation of pure culture, media used in raising pure culture; culture maintenance, storage of spawn.
- 3. Casing: Definition, Importance of casing mixture, Quality parameters of casing soil, different types of casing mixtures, commonly used materials.

<u>Unit –4</u>: Mushroom cultivation

(10h)

(10h)

Raw material, compost, spawning, casing, cropping, and problems in cultivation (diseases, pests and nematodes, weed molds and their management strategies), picking and packing for any Four of the following mushrooms:

(a) Button mushroom (b) Oyster mushroom (c) Milky mushroom and(d) Paddy straw mushroom

<u>Unit –5</u>: Post harvest technology

- 1. Shelf life of mushrooms; preservation of mushrooms freezing, dry freezing, drying and canning.
- 2. Quality assurance and entrepreneurship economics of different types of mushrooms; value added products of mushrooms.

3. Management of spent substrates and waste disposal of various mushrooms.

III. References:

- 1. Tewari Pankaj Kapoor, S. C. (1988). Mushroom Cultivation. Mittal Publication, New Delhi.
- 2. Pandey R.K, S. K Ghosh, (1996). A Hand Book on Mushroom Cultivation. Emkey Publications
- 3. Nita Bhal. (2000). Handbook on Mushrooms (Vol. I and II). Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi
- 4. Pathak, V. N. and Yadav, N. (1998). Mushroom Production and Processing Technology. Agrobios, Jodhpur.
- 5. Tripathi, D.P. (2005) Mushroom Cultivation, Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi.
- 6. Pathak V.N., Nagendra Yadav and Maneesha Gaur (2000), Mushroom Production and Processing Technology Vedams Ebooks Pvt. Ltd., New Delhi
- 7. Web resources suggested by the teacher concerned and the college librarian including reading material.

SRI VENKATESWARA UNIVERSITY

B.Sc. DEGREE COURSE IN BOTANY

V SEMESTER - W.E.F. 2022-23

COURSE 7C: MUSHROOM CULTIVATION

MODEL QUESTION PAPER

Time: 3 hours

Marks: 75 marks

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer any five of the following questions in Part A.Part B consists of 5 Units. Answer one full question (A or B) from each unit (i.e., Q.No 9 from Unit – I, Q.No 10 from Unit – II, Q.No 11 from Unit – III, Q.No 12 from Unit – IV, Q.No 13 from Unit – V). Each question carries 10 marks.

PART – A

Answer any *Five* of the following question.

(5X5=25M)

PART –	B
--------	---

9.	(A)
	OR
	(B)
10.	(A)
	OR
	(B)
11	
11.	(A)
	OR
	(B)
12.	(A)
	OR
	(B)
13.	(A)
	OR
	(B)

Answer All The Questions. Each question carries 10 marks (5X10= 50M)

COURSE 7C: MUSHROOM CULTIVATION – PRACTICAL SYLLABUS

IV. Learning Outcomes: On successful completion of this practical course, student will be able to:

- 1. Identify and discriminate different mushrooms based on morphology.
- 2. Understand facilities required for mushroom cultivation.
- 3. Demonstrate skills on preparation of spawn, compost and casing material.
- 4. Exhibit skills on various cultivation practices for an edible mushroom.

V. Practical (Laboratory) Syllabus: (30 hrs)

- 1. Identification of different types of mushrooms.
- 2. Preparation of pure culture of an edible mushroom.
- 3. Preparation of mother spawn.
- 4. Production of planting spawn and storage.
- 5. Preparation of compost and casing mixture.
- 6. Demonstration of spawning and casing.
- 7. Hands on experience on cropping and harvesting.
- 8. Demonstration of storage methods.
- 9. Preparation of value-added products.

VI. Lab References:

- 1. Sushma Sharma Sapna Thakur Ajar Nath Yadav, 2018. Mushroom Cultivation: A Laboratory Manual, Eternal University, Sirmour, H.P.
- Kadhila-Muandingi, N.P., F. S. Mubiana and K. L. Halueendo, 2012. Mushroom Cultivation: A Beginners Guide, The University of Namibia
- 3. Gajendra Jagatap and Utpal Dey, 2012. Mushroom Cultivation:Practical Manual, LAMBERT Academic Publishing, Saarbrücken, Germany
- 4. Deepak Som, 2021. A Practical Manual on Mushroom Cultivation, P.K.Publishers & Distributors, Delhi
- 5. Web sources suggested by the teacher concerned.

VII. Co-Curricular Activities:

- a) Mandatory: (Lab/field training of students by teacher: Lab: 10 + field: 05 hours)
 - 1. For Teacher: Training of students by teacher in the laboratory/field for not less than

15 hours on the field techniques/skills of identification of edible and poisonous mushrooms, basic facilities of a mushroom culture unit, preparation of compost and spawn, cultivation practices of edible mushrooms, storage and marketing of produce.

2. For Student: Students shall (individually) visit mushroom culture units in universities/research organizations/private sector write their observations on infrastructure, cultivation practices and products of a

mushroom culture unit etc., and submit to the teacher a hand-written Fieldwork/Project work Report not exceeding 10 pages in the given format.

- 3. Max marks for Fieldwork/Project work Report: 05.
- 6. Suggested Format for Fieldwork/Project work Report: Title page, student details, index page, details of place visited, observations, findings and acknowledgements.
- 4. Unit tests (IE).

b) Suggested Co-Curricular Activities:

- 1. Training of students by related industrial experts.
- 2. Assignments (including technical assignments like identifying various mushrooms, tools and techniques for culture, identification and control of diseases etc.,
- 3. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
- 4. Preparation of videos on tools and techniques in mushroom culture.
- 5. Collection of material/figures/photos related to edible and poisonous mushrooms, cultivation of mushrooms in cottage industries, writing and organizing them in a systematic way in a file.
- 6. Visits to mushroom culture units in universities, research organizations, private firms, etc.
- 7. Invited lectures and presentations on related topics by field/industrial experts.

Model Question Paper Pattern for Practical Examination

Semester - V/ Botany Skill Enhancement Course

Mushroom Cultivation

Max. Time: 3 Hrs.

Max. Marks: 50

8

10

12

- 1. Demonstration of preparing pure culture/mother spawn 'A'
- 2. Preparation method for planting spawn and storage/compost and casing material 'B'
- 3. Demonstration of spawning and casing/storage and making a value-added product 'C'
- $4 \ge 3 = 12$ 4. Scientific observation and data analysis
 - D. Edible/poisonous mushroom specimen/photograph
 - E. Infrastructure/tool used in mushroom cultivation
 - F. Material for compost/casing

orem

- G. Storage practice/ a value-added product
- 5. Record + Viva-voce

Lecturer in Botany Govt. Degree College TTUR Chittoor (Dt.), A.P.-5

A RAO Dr. J. K M.Sc. Ph.D LECTURER IN BOTANY GOVT. DEGREE & P.G. COLLINE PUTTUR, CHITTOOR Dt., A.F.

5+3 = 8

GDHS , M.Sc., M Assistant Professor of Botany

Dr. E. JYOTHI, M.Sc., M.Phil, Ph D

LECTURER IN BOTANY

S.P.W. DEGREE & P.G. COLLEGE

TIRUPATI-517 502

Government Degree College Kuppam, Chittoor Dt, A.P.-517425

Bhavanie Deri

BHAVANI DEVT6 3/2 LECTURER IN BOTANY Govt. Degree College (W) MADANAPALLE - 517 325

- - BOS Member 26 03 2022 (Dr. C. ARUNA)